X-Git-Url: https://git.nihav.org/?a=blobdiff_plain;f=nihav-core%2Fsrc%2Fsoundcvt%2Fmod.rs;h=891a58a3933442d6d91a2e91192e74181acf62d2;hb=952dad98a4a5ae723e3c2432b62567d88b4c3c0d;hp=bc34b23da0e386a25b4ed6bfbf9961f802cb3452;hpb=8809c626d8dbe3c3f09f15396410680cc4c1fbba;p=nihav.git diff --git a/nihav-core/src/soundcvt/mod.rs b/nihav-core/src/soundcvt/mod.rs index bc34b23..891a58a 100644 --- a/nihav-core/src/soundcvt/mod.rs +++ b/nihav-core/src/soundcvt/mod.rs @@ -1,3 +1,7 @@ +//! Sound format conversion. +//! +//! This module implements the functionality for conversion between different sound formats: packed or planar audio, 8-/16-/24-/32-bit, integer or floating point, different number of channels. +//! Eventually this might support resampling as well. pub use crate::formats::{NASoniton,NAChannelMap}; pub use crate::frame::{NAAudioBuffer,NAAudioInfo,NABufferType}; use crate::formats::NAChannelType; @@ -5,10 +9,14 @@ use crate::frame::alloc_audio_buffer; use crate::io::byteio::*; use std::f32::consts::SQRT_2; +/// A list specifying general sound conversion errors. #[derive(Clone,Copy,Debug,PartialEq)] pub enum SoundConvertError { + /// Invalid input arguments. InvalidInput, + /// Allocation failed. AllocError, + /// Requested feature is not supported. Unsupported, } @@ -29,10 +37,10 @@ impl ChannelOp { } } -fn apply_channel_op(ch_op: &ChannelOp, src: &Vec, dst: &mut Vec) { +fn apply_channel_op(ch_op: &ChannelOp, src: &[T], dst: &mut Vec) { match *ch_op { ChannelOp::Passthrough => { - dst.copy_from_slice(src.as_slice()); + dst.copy_from_slice(src); }, ChannelOp::Reorder(ref reorder) => { for (out, idx) in dst.iter_mut().zip(reorder.iter()) { @@ -43,7 +51,7 @@ fn apply_channel_op(ch_op: &ChannelOp, src: &Vec, dst: &mut Vec) { }; } -fn remix_i32(ch_op: &ChannelOp, src: &Vec, dst: &mut Vec) { +fn remix_i32(ch_op: &ChannelOp, src: &[i32], dst: &mut Vec) { if let ChannelOp::Remix(ref remix_mat) = ch_op { let sch = src.len(); for (out, coeffs) in dst.iter_mut().zip(remix_mat.chunks(sch)) { @@ -62,7 +70,7 @@ fn remix_i32(ch_op: &ChannelOp, src: &Vec, dst: &mut Vec) { } } -fn remix_f32(ch_op: &ChannelOp, src: &Vec, dst: &mut Vec) { +fn remix_f32(ch_op: &ChannelOp, src: &[f32], dst: &mut Vec) { if let ChannelOp::Remix(ref remix_mat) = ch_op { let sch = src.len(); for (out, coeffs) in dst.iter_mut().zip(remix_mat.chunks(sch)) { @@ -89,13 +97,13 @@ impl FromFmt for u8 { fn cvt_from(val: u8) -> u8 { val } } impl FromFmt for i16 { - fn cvt_from(val: u8) -> i16 { ((val as i16) - 128).wrapping_mul(0x101) } + fn cvt_from(val: u8) -> i16 { u16::from(val ^ 0x80).wrapping_mul(0x101) as i16} } impl FromFmt for i32 { - fn cvt_from(val: u8) -> i32 { ((val as i32) - 128).wrapping_mul(0x01010101) } + fn cvt_from(val: u8) -> i32 { u32::from(val ^ 0x80).wrapping_mul(0x01010101) as i32 } } impl FromFmt for f32 { - fn cvt_from(val: u8) -> f32 { ((val as f32) - 128.0) / 128.0 } + fn cvt_from(val: u8) -> f32 { (f32::from(val) - 128.0) / 128.0 } } impl FromFmt for u8 { @@ -105,10 +113,10 @@ impl FromFmt for i16 { fn cvt_from(val: i16) -> i16 { val } } impl FromFmt for i32 { - fn cvt_from(val: i16) -> i32 { (val as i32).wrapping_mul(0x10001) } + fn cvt_from(val: i16) -> i32 { (i32::from(val) & 0xFFFF) | (i32::from(val) << 16) } } impl FromFmt for f32 { - fn cvt_from(val: i16) -> f32 { (val as f32) / 32768.0 } + fn cvt_from(val: i16) -> f32 { f32::from(val) / 32768.0 } } impl FromFmt for u8 { @@ -128,10 +136,19 @@ impl FromFmt for u8 { fn cvt_from(val: f32) -> u8 { ((val * 128.0) + 128.0).min(255.0).max(0.0) as u8 } } impl FromFmt for i16 { - fn cvt_from(val: f32) -> i16 { (val * 32768.0).min(16383.0).max(-16384.0) as i16 } + fn cvt_from(val: f32) -> i16 { (val * 32768.0).min(32767.0).max(-32768.0) as i16 } } impl FromFmt for i32 { - fn cvt_from(val: f32) -> i32 { (val * 31.0f32.exp2()) as i32 } + fn cvt_from(val: f32) -> i32 { + if val >= 1.0 { + std::i32::MAX + } else if val <= -1.0 { + std::i32::MIN + } else { + let scale = (1u32 << 31) as f32; + (val * scale) as i32 + } + } } impl FromFmt for f32 { fn cvt_from(val: f32) -> f32 { val } @@ -173,6 +190,28 @@ impl<'a, T:Copy+IntoFmt+IntoFmt> SampleReader for GenericSampleReader< } } +struct S8SampleReader<'a> { + data: &'a [u8], + stride: usize, +} + +impl<'a> SampleReader for S8SampleReader<'a> { + fn get_samples_i32(&self, pos: usize, dst: &mut Vec) { + let mut off = pos; + for el in dst.iter_mut() { + *el = (self.data[off] ^ 0x80).cvt_into(); + off += self.stride; + } + } + fn get_samples_f32(&self, pos: usize, dst: &mut Vec) { + let mut off = pos; + for el in dst.iter_mut() { + *el = (self.data[off] ^ 0x80).cvt_into(); + off += self.stride; + } + } +} + struct PackedSampleReader<'a> { data: &'a [u8], fmt: NASoniton, @@ -192,7 +231,7 @@ impl<'a> PackedSampleReader<'a> { let src = &self.data[offset..]; *el = if !self.fmt.float { match (self.bpp, self.fmt.be) { - (1, _) => src[0].cvt_into(), + (1, _) => if !self.fmt.signed { src[0].cvt_into() } else { (src[0] ^ 0x80).cvt_into() }, (2, true) => (read_u16be(src).unwrap() as i16).cvt_into(), (2, false) => (read_u16le(src).unwrap() as i16).cvt_into(), (3, true) => ((read_u24be(src).unwrap() << 8) as i32).cvt_into(), @@ -225,8 +264,8 @@ impl SampleReader for PackedSampleReader<'_> { } trait SampleWriter { - fn store_samples_i32(&mut self, pos: usize, src: &Vec); - fn store_samples_f32(&mut self, pos: usize, src: &Vec); + fn store_samples_i32(&mut self, pos: usize, src: &[i32]); + fn store_samples_f32(&mut self, pos: usize, src: &[f32]); } struct GenericSampleWriter<'a, T:Copy> { @@ -235,14 +274,14 @@ struct GenericSampleWriter<'a, T:Copy> { } impl<'a, T:Copy+FromFmt+FromFmt> SampleWriter for GenericSampleWriter<'a, T> { - fn store_samples_i32(&mut self, pos: usize, src: &Vec) { + fn store_samples_i32(&mut self, pos: usize, src: &[i32]) { let mut off = pos; for el in src.iter() { self.data[off] = (*el).cvt_into(); off += self.stride; } } - fn store_samples_f32(&mut self, pos: usize, src: &Vec) { + fn store_samples_f32(&mut self, pos: usize, src: &[f32]) { let mut off = pos; for el in src.iter() { self.data[off] = (*el).cvt_into(); @@ -264,7 +303,7 @@ impl<'a> PackedSampleWriter<'a> { Self { data, fmt, bpp } } - fn store_samples(&mut self, pos: usize, src: &Vec) where u8: FromFmt, i16: FromFmt, i32: FromFmt, f32: FromFmt { + fn store_samples(&mut self, pos: usize, src: &[T]) where u8: FromFmt, i16: FromFmt, i32: FromFmt, f32: FromFmt { let mut offset = pos * self.bpp * src.len(); for el in src.iter() { let dst = &mut self.data[offset..]; @@ -272,6 +311,9 @@ impl<'a> PackedSampleWriter<'a> { match (self.bpp, self.fmt.be) { (1, _) => { dst[0] = u8::cvt_from(*el); + if self.fmt.signed { + dst[0] ^= 0x80; + } }, (2, true) => write_u16be(dst, i16::cvt_from(*el) as u16).unwrap(), (2, false) => write_u16le(dst, i16::cvt_from(*el) as u16).unwrap(), @@ -285,8 +327,8 @@ impl<'a> PackedSampleWriter<'a> { match (self.bpp, self.fmt.be) { (4, true) => write_f32be(dst, f32::cvt_from(*el)).unwrap(), (4, false) => write_f32le(dst, f32::cvt_from(*el)).unwrap(), - (8, true) => write_f64be(dst, f32::cvt_from(*el) as f64).unwrap(), - (8, false) => write_f64le(dst, f32::cvt_from(*el) as f64).unwrap(), + (8, true) => write_f64be(dst, f64::from(f32::cvt_from(*el))).unwrap(), + (8, false) => write_f64le(dst, f64::from(f32::cvt_from(*el))).unwrap(), (_, _) => unreachable!(), }; } @@ -296,15 +338,16 @@ impl<'a> PackedSampleWriter<'a> { } impl SampleWriter for PackedSampleWriter<'_> { - fn store_samples_i32(&mut self, pos: usize, src: &Vec) { + fn store_samples_i32(&mut self, pos: usize, src: &[i32]) { self.store_samples(pos, src); } - fn store_samples_f32(&mut self, pos: usize, src: &Vec) { + fn store_samples_f32(&mut self, pos: usize, src: &[f32]) { self.store_samples(pos, src); } } -pub fn convert_audio_frame(src: &NABufferType, dst_info: &NAAudioInfo, dst_chmap: &NAChannelMap) -> +/// Converts input audio buffer into desired format and returns a newly allocated buffer. +pub fn convert_audio_frame(src: &NABufferType, dst_info: &NAAudioInfo, dst_chmap: &NAChannelMap) -> Result { let mut nsamples = src.get_audio_length(); if nsamples == 0 { @@ -353,17 +396,23 @@ Result { return Ok(src.clone()); } - let ret = alloc_audio_buffer(dst_info.clone(), nsamples, dst_chmap.clone()); + let ret = alloc_audio_buffer(*dst_info, nsamples, dst_chmap.clone()); if ret.is_err() { return Err(SoundConvertError::AllocError); } let mut dst_buf = ret.unwrap(); + let sstep = src.get_audio_step().max(1); + let dstep = dst_buf.get_audio_step().max(1); let sr: Box = match src { NABufferType::AudioU8(ref ab) => { let stride = ab.get_stride(); let data = ab.get_data(); - Box::new(GenericSampleReader { data, stride }) + if !src_fmt.signed { + Box::new(GenericSampleReader { data, stride }) + } else { + Box::new(S8SampleReader { data, stride }) + } }, NABufferType::AudioI16(ref ab) => { let data = ab.get_data(); @@ -418,33 +467,42 @@ Result { if !into_float { let mut svec = vec![0; src_chmap.num_channels()]; let mut dvec = vec![0; dst_chmap.num_channels()]; - for i in 0..nsamples { - sr.get_samples_i32(i, &mut svec); + let mut spos = 0; + let mut dpos = 0; + for _ in 0..nsamples { + sr.get_samples_i32(spos, &mut svec); if !channel_op.is_remix() { apply_channel_op(&channel_op, &svec, &mut dvec); } else { remix_i32(&channel_op, &svec, &mut dvec); } - sw.store_samples_i32(i, &dvec); + sw.store_samples_i32(dpos, &dvec); + spos += sstep; + dpos += dstep; } } else { let mut svec = vec![0.0; src_chmap.num_channels()]; let mut dvec = vec![0.0; dst_chmap.num_channels()]; - for i in 0..nsamples { - sr.get_samples_f32(i, &mut svec); + let mut spos = 0; + let mut dpos = 0; + for _ in 0..nsamples { + sr.get_samples_f32(spos, &mut svec); if !channel_op.is_remix() { apply_channel_op(&channel_op, &svec, &mut dvec); } else { remix_f32(&channel_op, &svec, &mut dvec); } - sw.store_samples_f32(i, &dvec); + sw.store_samples_f32(dpos, &dvec); + spos += sstep; + dpos += dstep; } } drop(sw); - + Ok(dst_buf) } +/// Checks whether two channel maps are identical. pub fn channel_maps_equal(a: &NAChannelMap, b: &NAChannelMap) -> bool { if a.num_channels() != b.num_channels() { return false; } for i in 0..a.num_channels() { @@ -455,6 +513,7 @@ pub fn channel_maps_equal(a: &NAChannelMap, b: &NAChannelMap) -> bool { true } +/// Checks whether two channel maps have identical channels (but maybe in different order). pub fn channel_maps_reordered(a: &NAChannelMap, b: &NAChannelMap) -> bool { if a.num_channels() != b.num_channels() { return false; } let mut count_a = [0u8; 32]; @@ -471,6 +530,7 @@ pub fn channel_maps_reordered(a: &NAChannelMap, b: &NAChannelMap) -> bool { true } +/// Calculates permutation matrix for reordering channels from source channel map into destination one. pub fn calculate_reorder_matrix(src: &NAChannelMap, dst: &NAChannelMap) -> Vec { if src.num_channels() != dst.num_channels() { return Vec::new(); } let num_channels = src.num_channels(); @@ -490,10 +550,11 @@ pub fn calculate_reorder_matrix(src: &NAChannelMap, dst: &NAChannelMap) -> Vec bool { (chmap.num_channels() == 2) && - (chmap.get_channel(0) == NAChannelType::L) && + (chmap.get_channel(0) == NAChannelType::L) && (chmap.get_channel(1) == NAChannelType::R) } +/// Calculates matrix of remixing coefficients for converting input channel layout into destination one. pub fn calculate_remix_matrix(src: &NAChannelMap, dst: &NAChannelMap) -> Vec { if is_stereo(src) && dst.num_channels() == 1 && (dst.get_channel(0) == NAChannelType::L || dst.get_channel(0) == NAChannelType::C) { @@ -553,7 +614,7 @@ mod test { block_len: 512, }; let mut src_frm = alloc_audio_buffer(src_ainfo, 42, chcfg51.clone()).unwrap(); - if let NABufferType::AudioPacked(ref mut abuf) = src_frm { + if let NABufferType::AudioU8(ref mut abuf) = src_frm { let data = abuf.get_data_mut().unwrap(); let mut idx = 0; for _ in 0..42 { @@ -574,7 +635,7 @@ mod test { let l = data[off0]; let r = data[off1]; assert_eq!(l, 7445); - assert_eq!(r, -19943); + assert_eq!(r, -19505); } else { panic!("wrong buffer type"); }