--- /dev/null
+use std::f32::{self, consts};
+use std::ops::{Not, Neg, Add, AddAssign, Sub, SubAssign, Mul, MulAssign};
+use std::fmt;
+
+#[derive(Debug,Clone,Copy,PartialEq)]
+pub struct FFTComplex {
+ pub re: f32,
+ pub im: f32,
+}
+
+impl FFTComplex {
+ pub fn exp(val: f32) -> Self {
+ FFTComplex { re: val.cos(), im: val.sin() }
+ }
+ pub fn rotate(self) -> Self {
+ FFTComplex { re: -self.im, im: self.re }
+ }
+ pub fn scale(self, scale: f32) -> Self {
+ FFTComplex { re: self.re * scale, im: self.im * scale }
+ }
+}
+
+impl Neg for FFTComplex {
+ type Output = FFTComplex;
+ fn neg(self) -> Self::Output {
+ FFTComplex { re: -self.re, im: -self.im }
+ }
+}
+
+impl Not for FFTComplex {
+ type Output = FFTComplex;
+ fn not(self) -> Self::Output {
+ FFTComplex { re: self.re, im: -self.im }
+ }
+}
+
+impl Add for FFTComplex {
+ type Output = FFTComplex;
+ fn add(self, other: Self) -> Self::Output {
+ FFTComplex { re: self.re + other.re, im: self.im + other.im }
+ }
+}
+
+impl AddAssign for FFTComplex {
+ fn add_assign(&mut self, other: Self) {
+ self.re += other.re;
+ self.im += other.im;
+ }
+}
+
+impl Sub for FFTComplex {
+ type Output = FFTComplex;
+ fn sub(self, other: Self) -> Self::Output {
+ FFTComplex { re: self.re - other.re, im: self.im - other.im }
+ }
+}
+
+impl SubAssign for FFTComplex {
+ fn sub_assign(&mut self, other: Self) {
+ self.re -= other.re;
+ self.im -= other.im;
+ }
+}
+
+impl Mul for FFTComplex {
+ type Output = FFTComplex;
+ fn mul(self, other: Self) -> Self::Output {
+ FFTComplex { re: self.re * other.re - self.im * other.im,
+ im: self.im * other.re + self.re * other.im }
+ }
+}
+
+impl MulAssign for FFTComplex {
+ fn mul_assign(&mut self, other: Self) {
+ let re = self.re * other.re - self.im * other.im;
+ let im = self.im * other.re + self.re * other.im;
+ self.re = re;
+ self.im = im;
+ }
+}
+
+impl fmt::Display for FFTComplex {
+ fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
+ write!(f, "({}, {})", self.re, self.im)
+ }
+}
+
+pub const FFTC_ZERO: FFTComplex = FFTComplex { re: 0.0, im: 0.0 };
+
+#[derive(Debug,Clone,Copy,PartialEq)]
+pub enum FFTMode {
+ Matrix,
+ CooleyTukey,
+ SplitRadix,
+}
+
+pub struct FFT {
+ table: Vec<FFTComplex>,
+ perms: Vec<usize>,
+ swaps: Vec<usize>,
+ bits: u32,
+ mode: FFTMode,
+}
+
+impl FFT {
+ fn do_fft_inplace_ct(&mut self, data: &mut [FFTComplex], bits: u32, forward: bool) {
+ if bits == 0 { return; }
+ if bits == 1 {
+ let sum01 = data[0] + data[1];
+ let dif01 = data[0] - data[1];
+ data[0] = sum01;
+ data[1] = dif01;
+ return;
+ }
+ if bits == 2 {
+ let sum01 = data[0] + data[1];
+ let dif01 = data[0] - data[1];
+ let sum23 = data[2] + data[3];
+ let dif23 = data[2] - data[3];
+ if forward {
+ data[0] = sum01 + sum23;
+ data[1] = dif01 - dif23.rotate();
+ data[2] = sum01 - sum23;
+ data[3] = dif01 + dif23.rotate();
+ } else {
+ data[0] = sum01 + sum23;
+ data[1] = dif01 + dif23.rotate();
+ data[2] = sum01 - sum23;
+ data[3] = dif01 - dif23.rotate();
+ }
+ return;
+ }
+
+ let hsize = (1 << (bits - 1)) as usize;
+ self.do_fft_inplace_ct(&mut data[0..hsize], bits - 1, forward);
+ self.do_fft_inplace_ct(&mut data[hsize..], bits - 1, forward);
+ let offs = hsize;
+ {
+ let e = data[0];
+ let o = data[hsize];
+ data[0] = e + o;
+ data[hsize] = e - o;
+ }
+ if forward {
+ for k in 1..hsize {
+ let e = data[k];
+ let o = data[k + hsize] * self.table[offs + k];
+ data[k] = e + o;
+ data[k + hsize] = e - o;
+ }
+ } else {
+ for k in 1..hsize {
+ let e = data[k];
+ let o = data[k + hsize] * !self.table[offs + k];
+ data[k] = e + o;
+ data[k + hsize] = e - o;
+ }
+ }
+ }
+
+ fn do_fft_inplace_splitradix(&mut self, data: &mut [FFTComplex], bits: u32, forward: bool) {
+ if bits == 0 { return; }
+ if bits == 1 {
+ let sum01 = data[0] + data[1];
+ let dif01 = data[0] - data[1];
+ data[0] = sum01;
+ data[1] = dif01;
+ return;
+ }
+ if bits == 2 {
+ let sum01 = data[0] + data[2];
+ let dif01 = data[0] - data[2];
+ let sum23 = data[1] + data[3];
+ let dif23 = data[1] - data[3];
+ if forward {
+ data[0] = sum01 + sum23;
+ data[1] = dif01 - dif23.rotate();
+ data[2] = sum01 - sum23;
+ data[3] = dif01 + dif23.rotate();
+ } else {
+ data[0] = sum01 + sum23;
+ data[1] = dif01 + dif23.rotate();
+ data[2] = sum01 - sum23;
+ data[3] = dif01 - dif23.rotate();
+ }
+ return;
+ }
+ let qsize = (1 << (bits - 2)) as usize;
+ let hsize = (1 << (bits - 1)) as usize;
+ let q3size = qsize + hsize;
+
+ self.do_fft_inplace_splitradix(&mut data[0 ..hsize], bits - 1, forward);
+ self.do_fft_inplace_splitradix(&mut data[hsize ..q3size], bits - 2, forward);
+ self.do_fft_inplace_splitradix(&mut data[q3size..], bits - 2, forward);
+ let off = hsize;
+ if forward {
+ {
+ let t3 = data[0 + hsize] + data[0 + q3size];
+ let t4 = (data[0 + hsize] - data[0 + q3size]).rotate();
+ let e1 = data[0];
+ let e2 = data[0 + qsize];
+ data[0] = e1 + t3;
+ data[0 + qsize] = e2 - t4;
+ data[0 + hsize] = e1 - t3;
+ data[0 + q3size] = e2 + t4;
+ }
+ for k in 1..qsize {
+ let t1 = self.table[off + k * 2 + 0] * data[k + hsize];
+ let t2 = self.table[off + k * 2 + 1] * data[k + q3size];
+ let t3 = t1 + t2;
+ let t4 = (t1 - t2).rotate();
+ let e1 = data[k];
+ let e2 = data[k + qsize];
+ data[k] = e1 + t3;
+ data[k + qsize] = e2 - t4;
+ data[k + hsize] = e1 - t3;
+ data[k + qsize * 3] = e2 + t4;
+ }
+ } else {
+ {
+ let t3 = data[0 + hsize] + data[0 + q3size];
+ let t4 = (data[0 + hsize] - data[0 + q3size]).rotate();
+ let e1 = data[0];
+ let e2 = data[0 + qsize];
+ data[0] = e1 + t3;
+ data[0 + qsize] = e2 + t4;
+ data[0 + hsize] = e1 - t3;
+ data[0 + q3size] = e2 - t4;
+ }
+ for k in 1..qsize {
+ let t1 = !self.table[off + k * 2 + 0] * data[k + hsize];
+ let t2 = !self.table[off + k * 2 + 1] * data[k + q3size];
+ let t3 = t1 + t2;
+ let t4 = (t1 - t2).rotate();
+ let e1 = data[k];
+ let e2 = data[k + qsize];
+ data[k] = e1 + t3;
+ data[k + qsize] = e2 + t4;
+ data[k + hsize] = e1 - t3;
+ data[k + qsize * 3] = e2 - t4;
+ }
+ }
+ }
+
+ pub fn do_fft(&mut self, src: &[FFTComplex], dst: &mut [FFTComplex], forward: bool) {
+ match self.mode {
+ FFTMode::Matrix => {
+ let base = if forward { -consts::PI * 2.0 / (src.len() as f32) }
+ else { consts::PI * 2.0 / (src.len() as f32) };
+ for k in 0..src.len() {
+ let mut sum = FFTC_ZERO;
+ for n in 0..src.len() {
+ let w = FFTComplex::exp(base * ((n * k) as f32));
+ sum += src[n] * w;
+ }
+ dst[k] = sum;
+ }
+ },
+ FFTMode::CooleyTukey => {
+ let bits = self.bits;
+ for k in 0..src.len() { dst[k] = src[self.perms[k]]; }
+ self.do_fft_inplace_ct(dst, bits, forward);
+ },
+ FFTMode::SplitRadix => {
+ let bits = self.bits;
+ for k in 0..src.len() { dst[k] = src[self.perms[k]]; }
+ self.do_fft_inplace_splitradix(dst, bits, forward);
+ },
+ };
+ }
+
+ pub fn do_fft_inplace(&mut self, data: &mut [FFTComplex], forward: bool) {
+ for idx in 0..self.swaps.len() {
+ let nidx = self.swaps[idx];
+ if idx != nidx {
+ let t = data[nidx];
+ data[nidx] = data[idx];
+ data[idx] = t;
+ }
+ }
+ match self.mode {
+ FFTMode::Matrix => {
+ let size = (1 << self.bits) as usize;
+ let base = if forward { -consts::PI * 2.0 / (size as f32) }
+ else { consts::PI * 2.0 / (size as f32) };
+ let mut res: Vec<FFTComplex> = Vec::with_capacity(size);
+ for k in 0..size {
+ let mut sum = FFTC_ZERO;
+ for n in 0..size {
+ let w = FFTComplex::exp(base * ((n * k) as f32));
+ sum += data[n] * w;
+ }
+ res.push(sum);
+ }
+ for k in 0..size {
+ data[k] = res[k];
+ }
+ },
+ FFTMode::CooleyTukey => {
+ let bits = self.bits;
+ self.do_fft_inplace_ct(data, bits, forward);
+ },
+ FFTMode::SplitRadix => {
+ let bits = self.bits;
+ self.do_fft_inplace_splitradix(data, bits, forward);
+ },
+ };
+ }
+}
+
+pub struct FFTBuilder {
+}
+
+fn reverse_bits(inval: u32) -> u32 {
+ const REV_TAB: [u8; 16] = [
+ 0b0000, 0b1000, 0b0100, 0b1100, 0b0010, 0b1010, 0b0110, 0b1110,
+ 0b0001, 0b1001, 0b0101, 0b1101, 0b0011, 0b1011, 0b0111, 0b1111,
+ ];
+
+ let mut ret = 0;
+ let mut val = inval;
+ for _ in 0..8 {
+ ret = (ret << 4) | (REV_TAB[(val & 0xF) as usize] as u32);
+ val = val >> 4;
+ }
+ ret
+}
+
+fn swp_idx(idx: usize, bits: u32) -> usize {
+ let s = reverse_bits(idx as u32) as usize;
+ s >> (32 - bits)
+}
+
+fn gen_sr_perms(swaps: &mut [usize], size: usize) {
+ if size <= 4 { return; }
+ let mut evec: Vec<usize> = Vec::with_capacity(size / 2);
+ let mut ovec1: Vec<usize> = Vec::with_capacity(size / 4);
+ let mut ovec2: Vec<usize> = Vec::with_capacity(size / 4);
+ for k in 0..size/4 {
+ evec.push (swaps[k * 4 + 0]);
+ ovec1.push(swaps[k * 4 + 1]);
+ evec.push (swaps[k * 4 + 2]);
+ ovec2.push(swaps[k * 4 + 3]);
+ }
+ for k in 0..size/2 { swaps[k] = evec[k]; }
+ for k in 0..size/4 { swaps[k + size/2] = ovec1[k]; }
+ for k in 0..size/4 { swaps[k + 3*size/4] = ovec2[k]; }
+ gen_sr_perms(&mut swaps[0..size/2], size/2);
+ gen_sr_perms(&mut swaps[size/2..3*size/4], size/4);
+ gen_sr_perms(&mut swaps[3*size/4..], size/4);
+}
+
+fn gen_swaps_for_perm(swaps: &mut Vec<usize>, perms: &Vec<usize>) {
+ let mut idx_arr: Vec<usize> = Vec::with_capacity(perms.len());
+ for i in 0..perms.len() { idx_arr.push(i); }
+ let mut run_size = 0;
+ let mut run_pos = 0;
+ for idx in 0..perms.len() {
+ if perms[idx] == idx_arr[idx] {
+ if run_size == 0 { run_pos = idx; }
+ run_size += 1;
+ } else {
+ for i in 0..run_size {
+ swaps.push(run_pos + i);
+ }
+ run_size = 0;
+ let mut spos = idx + 1;
+ while idx_arr[spos] != perms[idx] { spos += 1; }
+ idx_arr[spos] = idx_arr[idx];
+ idx_arr[idx] = perms[idx];
+ swaps.push(spos);
+ }
+ }
+}
+
+impl FFTBuilder {
+ pub fn new_fft(mode: FFTMode, size: usize) -> FFT {
+ let mut swaps: Vec<usize>;
+ let mut perms: Vec<usize>;
+ let mut table: Vec<FFTComplex>;
+ let bits = 31 - (size as u32).leading_zeros();
+ match mode {
+ FFTMode::Matrix => {
+ swaps = Vec::new();
+ perms = Vec::new();
+ table = Vec::new();
+ },
+ FFTMode::CooleyTukey => {
+ perms = Vec::with_capacity(size);
+ for i in 0..size {
+ perms.push(swp_idx(i, bits));
+ }
+ swaps = Vec::with_capacity(size);
+ table = Vec::with_capacity(size);
+ for _ in 0..4 { table.push(FFTC_ZERO); }
+ for b in 3..(bits+1) {
+ let hsize = (1 << (b - 1)) as usize;
+ let base = -consts::PI / (hsize as f32);
+ for k in 0..hsize {
+ table.push(FFTComplex::exp(base * (k as f32)));
+ }
+ }
+ },
+ FFTMode::SplitRadix => {
+ perms = Vec::with_capacity(size);
+ for i in 0..size {
+ perms.push(i);
+ }
+ gen_sr_perms(perms.as_mut_slice(), 1 << bits);
+ swaps = Vec::with_capacity(size);
+ table = Vec::with_capacity(size);
+ for _ in 0..4 { table.push(FFTC_ZERO); }
+ for b in 3..(bits+1) {
+ let qsize = (1 << (b - 2)) as usize;
+ let base = -consts::PI / ((qsize * 2) as f32);
+ for k in 0..qsize {
+ table.push(FFTComplex::exp(base * ((k * 1) as f32)));
+ table.push(FFTComplex::exp(base * ((k * 3) as f32)));
+ }
+ }
+ },
+ };
+ gen_swaps_for_perm(&mut swaps, &perms);
+ FFT { mode: mode, swaps: swaps, perms: perms, bits: bits, table: table }
+ }
+}
+
+
+#[cfg(test)]
+mod test {
+ use super::*;
+
+ #[test]
+ fn test_fft() {
+ let mut fin: [FFTComplex; 128] = [FFTC_ZERO; 128];
+ let mut fout1: [FFTComplex; 128] = [FFTC_ZERO; 128];
+ let mut fout2: [FFTComplex; 128] = [FFTC_ZERO; 128];
+ let mut fout3: [FFTComplex; 128] = [FFTC_ZERO; 128];
+ let mut fft1 = FFTBuilder::new_fft(FFTMode::Matrix, fin.len());
+ let mut fft2 = FFTBuilder::new_fft(FFTMode::CooleyTukey, fin.len());
+ let mut fft3 = FFTBuilder::new_fft(FFTMode::SplitRadix, fin.len());
+ let mut seed: u32 = 42;
+ for i in 0..fin.len() {
+ seed = seed.wrapping_mul(1664525).wrapping_add(1013904223);
+ let val = (seed >> 16) as i16;
+ fin[i].re = (val as f32) / 256.0;
+ seed = seed.wrapping_mul(1664525).wrapping_add(1013904223);
+ let val = (seed >> 16) as i16;
+ fin[i].im = (val as f32) / 256.0;
+ }
+ fft1.do_fft(&fin, &mut fout1, true);
+ fft2.do_fft(&fin, &mut fout2, true);
+ fft3.do_fft(&fin, &mut fout3, true);
+
+ for i in 0..fin.len() {
+ assert!((fout1[i].re - fout2[i].re).abs() < 1.0);
+ assert!((fout1[i].im - fout2[i].im).abs() < 1.0);
+ assert!((fout1[i].re - fout3[i].re).abs() < 1.0);
+ assert!((fout1[i].im - fout3[i].im).abs() < 1.0);
+ }
+ fft1.do_fft_inplace(&mut fout1, false);
+ fft2.do_fft_inplace(&mut fout2, false);
+ fft3.do_fft_inplace(&mut fout3, false);
+
+ let sc = 1.0 / (fin.len() as f32);
+ for i in 0..fin.len() {
+ assert!((fin[i].re - fout1[i].re * sc).abs() < 1.0);
+ assert!((fin[i].im - fout1[i].im * sc).abs() < 1.0);
+ assert!((fout1[i].re - fout2[i].re).abs() < 1.0);
+ assert!((fout1[i].im - fout2[i].im).abs() < 1.0);
+ assert!((fout1[i].re - fout3[i].re).abs() < 1.0);
+ assert!((fout1[i].im - fout3[i].im).abs() < 1.0);
+ }
+ }
+}