]>
Commit | Line | Data |
---|---|---|
4b459d0b KS |
1 | use super::Pixel; |
2 | ||
3 | struct RNG { | |
4 | seed: u16, | |
5 | } | |
6 | ||
7 | impl RNG { | |
8 | fn new() -> Self { Self { seed: 0x1234 } } | |
9 | fn next(&mut self) -> u8 { | |
10 | if (self.seed & 0x8000) != 0 { | |
11 | self.seed = (self.seed & 0x7FFF) * 2 ^ 0x1B2B; | |
12 | } else { | |
13 | self.seed <<= 1; | |
14 | } | |
15 | self.seed as u8 | |
16 | } | |
17 | } | |
18 | ||
19 | #[derive(Default,Clone,Copy,PartialEq,Debug)] | |
20 | struct Entry { | |
21 | pix: Pixel, | |
22 | count: u64, | |
23 | } | |
24 | ||
25 | struct Cluster { | |
26 | centroid: Pixel, | |
27 | dist: u64, | |
28 | count: u64, | |
29 | sum_r: u64, | |
30 | sum_g: u64, | |
31 | sum_b: u64, | |
32 | } | |
33 | ||
34 | impl Cluster { | |
35 | fn new(centroid: Pixel) -> Self { | |
36 | Self { | |
37 | centroid, | |
38 | dist: 0, | |
39 | count: 0, | |
40 | sum_r: 0, | |
41 | sum_g: 0, | |
42 | sum_b: 0, | |
43 | } | |
44 | } | |
45 | fn reset(&mut self) { | |
46 | self.count = 0; | |
47 | self.sum_r = 0; | |
48 | self.sum_g = 0; | |
49 | self.sum_b = 0; | |
50 | self.dist = 0; | |
51 | } | |
52 | fn add_pixel(&mut self, entry: &Entry) { | |
53 | self.sum_r += u64::from(entry.pix.r) * entry.count; | |
54 | self.sum_g += u64::from(entry.pix.g) * entry.count; | |
55 | self.sum_b += u64::from(entry.pix.b) * entry.count; | |
56 | self.count += entry.count; | |
57 | } | |
58 | fn add_dist(&mut self, entry: &Entry) { | |
59 | self.dist += u64::from(self.centroid.dist(entry.pix)) * entry.count; | |
60 | } | |
61 | fn calc_centroid(&mut self) { | |
62 | if self.count != 0 { | |
63 | self.centroid.r = ((self.sum_r + self.count / 2) / self.count) as u8; | |
64 | self.centroid.g = ((self.sum_g + self.count / 2) / self.count) as u8; | |
65 | self.centroid.b = ((self.sum_b + self.count / 2) / self.count) as u8; | |
66 | } | |
67 | } | |
68 | fn calc_dist(&mut self) { | |
69 | if self.count != 0 { | |
70 | self.dist = (self.dist + self.count / 2) / self.count; | |
71 | } | |
72 | } | |
73 | } | |
74 | ||
75 | pub struct ELBG { | |
76 | clusters: Vec<Cluster>, | |
77 | } | |
78 | ||
79 | impl ELBG { | |
80 | #[allow(dead_code)] | |
81 | pub fn new(initial_pal: &[[u8; 3]; 256]) -> Self { | |
82 | let mut clusters = Vec::with_capacity(256); | |
83 | for i in 0..256 { | |
84 | let pix = Pixel { r: initial_pal[i][0], g: initial_pal[i][1], b: initial_pal[i][2] }; | |
85 | let cluster = Cluster::new(pix); | |
86 | clusters.push(cluster); | |
87 | } | |
88 | Self { | |
89 | clusters, | |
90 | } | |
91 | } | |
92 | #[allow(dead_code)] | |
93 | pub fn new_random() -> Self { | |
94 | let mut rng = RNG::new(); | |
95 | let mut clusters = Vec::with_capacity(256); | |
96 | for _ in 0..256 { | |
97 | let pix = Pixel { r: rng.next(), g: rng.next(), b: rng.next() }; | |
98 | let cluster = Cluster::new(pix); | |
99 | clusters.push(cluster); | |
100 | } | |
101 | Self { | |
102 | clusters, | |
103 | } | |
104 | } | |
105 | fn sort<F>(arr: &mut [Pixel], idx: F) where F: Fn(&Pixel) -> u8 { | |
106 | let mut dst = vec![Pixel::default(); arr.len()]; | |
107 | let mut counts = [0; 256]; | |
108 | for pix in arr.iter() { | |
109 | counts[idx(pix) as usize] += 1; | |
110 | } | |
111 | let mut last = counts[0]; | |
112 | counts[0] = 0; | |
113 | for count in counts.iter_mut().skip(1) { | |
114 | let plast = last; | |
115 | last += *count; | |
116 | *count = plast; | |
117 | } | |
118 | for pix in arr.iter() { | |
119 | let bucket = idx(pix) as usize; | |
120 | dst[counts[bucket]] = *pix; | |
121 | counts[bucket] += 1; | |
122 | } | |
123 | arr.copy_from_slice(dst.as_slice()); | |
124 | } | |
125 | fn new_split(old_index: usize, entries: &[Entry], indices: &[usize]) -> Option<(Pixel, Pixel)> { | |
126 | let mut max = Pixel { r: 0, g: 0, b: 0 }; | |
127 | let mut min = Pixel { r: 255, g: 255, b: 255 }; | |
128 | let mut found = false; | |
129 | for (entry, idx) in entries.iter().zip(indices) { | |
130 | if *idx == old_index { | |
131 | max = max.max(entry.pix); | |
132 | min = min.min(entry.pix); | |
133 | found = true; | |
134 | } | |
135 | } | |
136 | if !found { | |
137 | return None; | |
138 | } | |
139 | let dr = max.r - min.r; | |
140 | let dg = max.g - min.g; | |
141 | let db = max.b - min.b; | |
142 | let cent0 = Pixel { r: min.r + dr / 3, g: min.g + dg / 3, b: min.b + db / 3 }; | |
143 | let cent1 = Pixel { r: max.r - dr / 3, g: max.g - dg / 3, b: max.b - db / 3 }; | |
144 | Some((cent0, cent1)) | |
145 | } | |
146 | fn old_centre(&self, old_index1: usize, old_index2: usize, entries: &[Entry], indices: &[usize]) -> Pixel { | |
147 | let mut max = Pixel { r: 0, g: 0, b: 0 }; | |
148 | let mut min = Pixel { r: 255, g: 255, b: 255 }; | |
149 | let mut found = false; | |
150 | for (entry, idx) in entries.iter().zip(indices) { | |
151 | if *idx == old_index1 || *idx == old_index2 { | |
152 | max = max.max(entry.pix); | |
153 | min = min.min(entry.pix); | |
154 | found = true; | |
155 | } | |
156 | } | |
157 | if !found { | |
158 | max = self.clusters[old_index1].centroid.max(self.clusters[old_index2].centroid); | |
159 | min = self.clusters[old_index1].centroid.min(self.clusters[old_index2].centroid); | |
160 | } | |
161 | let dr = max.r - min.r; | |
162 | let dg = max.g - min.g; | |
163 | let db = max.b - min.b; | |
164 | Pixel { r: min.r + dr / 2, g: min.g + dg / 2, b: min.b + db / 2 } | |
165 | } | |
166 | fn estimate_old(old_idx0: usize, old_idx1: usize, c: Pixel, entries: &[Entry], indices: &[usize]) -> u64 { | |
167 | let mut clu = Cluster::new(c); | |
168 | let mut count = 0; | |
169 | for (entry, idx) in entries.iter().zip(indices) { | |
170 | if *idx == old_idx0 || *idx == old_idx1 { | |
171 | clu.add_dist(entry); | |
172 | count += entry.count; | |
173 | } | |
174 | } | |
175 | clu.count = count; | |
176 | clu.calc_dist(); | |
177 | clu.dist | |
178 | } | |
179 | fn estimate_new(c0: Pixel, c1: Pixel, old_idx: usize, entries: &[Entry], indices: &[usize]) -> u64 { | |
180 | let mut clu0 = Cluster::new(c0); | |
181 | let mut clu1 = Cluster::new(c1); | |
182 | let mut count0 = 0; | |
183 | let mut count1 = 0; | |
184 | for (entry, idx) in entries.iter().zip(indices) { | |
185 | if *idx == old_idx { | |
186 | if c0.dist(entry.pix) < c1.dist(entry.pix) { | |
187 | clu0.add_dist(entry); | |
188 | count0 += entry.count; | |
189 | } else { | |
190 | clu1.add_dist(entry); | |
191 | count1 += entry.count; | |
192 | } | |
193 | } | |
194 | } | |
195 | clu0.count = count0; | |
196 | clu1.count = count1; | |
197 | clu0.calc_dist(); | |
198 | clu1.calc_dist(); | |
199 | clu0.dist + clu1.dist | |
200 | } | |
201 | pub fn quantise(&mut self, src: &[Pixel], dst: &mut [[u8; 3]; 256]) { | |
202 | if src.len() < 3 { | |
203 | return; | |
204 | } | |
205 | let mut old_cb: [Pixel; 256] = [Pixel::default(); 256]; | |
206 | let mut prev_dist = std::u64::MAX; | |
207 | let mut dist = std::u64::MAX / 2; | |
208 | let mut indices = Vec::with_capacity(src.len()); | |
209 | let mut pixels = Vec::with_capacity(src.len()); | |
210 | pixels.extend_from_slice(src); | |
211 | Self::sort(pixels.as_mut_slice(), |pix| pix.r); | |
212 | Self::sort(pixels.as_mut_slice(), |pix| pix.g); | |
213 | Self::sort(pixels.as_mut_slice(), |pix| pix.b); | |
214 | let mut entries = Vec::with_capacity(pixels.len() / 2); | |
215 | let mut lastval = pixels[0]; | |
216 | let mut run = 1; | |
217 | for pix in pixels.iter().skip(1) { | |
218 | if &lastval == pix { | |
219 | run += 1; | |
220 | } else { | |
221 | entries.push(Entry { pix: lastval, count: run }); | |
222 | lastval = *pix; | |
223 | run = 1; | |
224 | } | |
225 | } | |
226 | entries.push(Entry { pix: lastval, count: run }); | |
227 | drop(pixels); | |
228 | ||
229 | let mut low_u: Vec<usize> = Vec::with_capacity(256); | |
230 | let mut high_u: Vec<usize> = Vec::with_capacity(256); | |
231 | let mut rng = RNG::new(); | |
232 | let mut iterations = 0usize; | |
233 | let mut do_elbg_step = true; | |
234 | while (iterations < 20) && (dist < prev_dist - prev_dist / 1000) { | |
235 | prev_dist = dist; | |
236 | for i in 0..256 { | |
237 | old_cb[i] = self.clusters[i].centroid; | |
238 | self.clusters[i].reset(); | |
239 | } | |
240 | // put pixels into the nearest clusters | |
241 | indices.truncate(0); | |
242 | for entry in entries.iter() { | |
243 | let mut bestidx = 0; | |
244 | let mut bestdist = std::u32::MAX; | |
245 | for (i, cluster) in self.clusters.iter().enumerate() { | |
246 | let dist = entry.pix.dist(cluster.centroid); | |
247 | if bestdist > dist { | |
248 | bestdist = dist; | |
249 | bestidx = i; | |
250 | if dist == 0 { | |
251 | break; | |
252 | } | |
253 | } | |
254 | } | |
255 | indices.push(bestidx); | |
256 | self.clusters[bestidx].add_pixel(entry); | |
257 | } | |
258 | // calculate params | |
259 | for cluster in self.clusters.iter_mut() { | |
260 | cluster.calc_centroid(); | |
261 | } | |
262 | dist = 0; | |
263 | for (idx, entry) in indices.iter().zip(entries.iter()) { | |
264 | self.clusters[*idx].add_dist(entry); | |
265 | } | |
266 | for cluster in self.clusters.iter_mut() { | |
267 | cluster.calc_dist(); | |
268 | dist += cluster.dist; | |
269 | } | |
270 | ||
271 | let dmean = dist / 256; | |
272 | low_u.truncate(0); | |
273 | high_u.truncate(0); | |
274 | let mut used = [false; 256]; | |
275 | for (i, cluster) in self.clusters.iter().enumerate() { | |
276 | if cluster.dist < dmean { | |
277 | low_u.push(i); | |
278 | } else if cluster.dist > dmean * 2 { | |
279 | high_u.push(i); | |
280 | used[i] = true; | |
281 | } | |
282 | } | |
283 | ||
284 | if do_elbg_step { | |
285 | do_elbg_step = false; | |
286 | for low_idx in low_u.iter() { | |
287 | if high_u.len() == 0 { | |
288 | break; | |
289 | } | |
290 | let high_idx_idx = (rng.next() as usize) % high_u.len(); | |
291 | let high_idx = high_u[high_idx_idx]; | |
292 | let mut closest_idx = *low_idx; | |
293 | let mut closest_dist = std::u32::MAX; | |
294 | let low_centr = self.clusters[*low_idx].centroid; | |
295 | for i in 0..256 {//low_u.iter() { | |
296 | if i == *low_idx || used[i] { | |
297 | continue; | |
298 | } | |
299 | let dist = self.clusters[i].centroid.dist(low_centr); | |
300 | if closest_dist > dist { | |
301 | closest_dist = dist; | |
302 | closest_idx = i; | |
303 | } | |
304 | } | |
305 | if closest_idx == *low_idx { | |
306 | continue; | |
307 | } | |
308 | let old_dist = self.clusters[*low_idx].dist + self.clusters[closest_idx].dist + self.clusters[high_idx].dist; | |
309 | let old_centr = self.old_centre(*low_idx, closest_idx, entries.as_slice(), indices.as_slice()); | |
310 | let ret = Self::new_split(high_idx, entries.as_slice(), indices.as_slice()); | |
311 | if ret.is_none() { | |
312 | continue; | |
313 | } | |
314 | let (centr0, centr1) = ret.unwrap(); | |
315 | let dist_o = if old_dist > self.clusters[high_idx].dist { | |
316 | Self::estimate_old(*low_idx, closest_idx, old_centr, entries.as_slice(), indices.as_slice()) | |
317 | } else { 0 }; | |
318 | let dist_n = Self::estimate_new(centr0, centr1, high_idx, entries.as_slice(), indices.as_slice()); | |
319 | if dist_o + dist_n < old_dist { | |
320 | self.clusters[*low_idx ].centroid = old_centr; | |
321 | self.clusters[closest_idx].centroid = centr0; | |
322 | self.clusters[high_idx ].centroid = centr1; | |
323 | used[*low_idx] = true; | |
324 | used[closest_idx] = true; | |
325 | used[high_idx] = true; | |
326 | high_u.remove(high_idx_idx); | |
327 | do_elbg_step = true; | |
328 | } | |
329 | } | |
330 | } | |
331 | iterations += 1; | |
332 | } | |
333 | if dist < prev_dist { | |
334 | for i in 0..256 { | |
335 | old_cb[i] = self.clusters[i].centroid; | |
336 | } | |
337 | } | |
338 | for i in 0..256 { | |
339 | dst[i][0] = old_cb[i].r; | |
340 | dst[i][1] = old_cb[i].g; | |
341 | dst[i][2] = old_cb[i].b; | |
342 | } | |
343 | } | |
344 | } |