]>
Commit | Line | Data |
---|---|---|
1 | use nihav_core::io::byteio::*; | |
2 | use nihav_core::codecs::{EncoderResult, EncoderError}; | |
3 | use nihav_codec_support::codecs::MV; | |
4 | use super::super::vpcommon::*; | |
5 | use super::super::vp6data::*; | |
6 | use super::models::*; | |
7 | ||
8 | struct EncSeq { | |
9 | bit: bool, | |
10 | idx: u8, | |
11 | } | |
12 | ||
13 | pub struct TokenSeq<T: PartialEq> { | |
14 | val: T, | |
15 | seq: &'static [EncSeq], | |
16 | } | |
17 | ||
18 | macro_rules! bit_entry { | |
19 | (T; $idx:expr) => {EncSeq {bit: true, idx: $idx }}; | |
20 | (F; $idx:expr) => {EncSeq {bit: false, idx: $idx }}; | |
21 | } | |
22 | ||
23 | macro_rules! bit_seq { | |
24 | ($val: expr; $( $bit:tt),* ; $( $idx:expr),* ) => { | |
25 | TokenSeq { | |
26 | val: $val, | |
27 | seq: | |
28 | &[ | |
29 | $( | |
30 | bit_entry!($bit; $idx), | |
31 | )* | |
32 | ] | |
33 | } | |
34 | }; | |
35 | } | |
36 | ||
37 | pub const MODE_TREE: &[TokenSeq<VPMBType>] = &[ | |
38 | bit_seq!(VPMBType::Intra; T, F, F; 0, 2, 5), | |
39 | bit_seq!(VPMBType::InterFourMV; T, F, T; 0, 2, 5), | |
40 | bit_seq!(VPMBType::InterNoMV; F, F, F; 0, 1, 3), | |
41 | bit_seq!(VPMBType::InterMV; F, F, T; 0, 1, 3), | |
42 | bit_seq!(VPMBType::InterNearest; F, T, F; 0, 1, 4), | |
43 | bit_seq!(VPMBType::InterNear; F, T, T; 0, 1, 4), | |
44 | bit_seq!(VPMBType::GoldenNoMV; T, T, F, F; 0, 2, 6, 7), | |
45 | bit_seq!(VPMBType::GoldenMV; T, T, F, T; 0, 2, 6, 7), | |
46 | bit_seq!(VPMBType::GoldenNearest; T, T, T, F; 0, 2, 6, 8), | |
47 | bit_seq!(VPMBType::GoldenNear; T, T, T, T; 0, 2, 6, 8), | |
48 | ]; | |
49 | ||
50 | const MODE_TREE_DIFF: &[TokenSeq<u8>] = &[ | |
51 | bit_seq!(1; F, T; 0, 1), | |
52 | bit_seq!(2; F, F; 0, 1), | |
53 | bit_seq!(3; T, F, T; 0, 2, 3), | |
54 | bit_seq!(4; T, F, F, T; 0, 2, 3, 4), | |
55 | bit_seq!(5; T, F, F, F, T; 0, 2, 3, 4, 5), | |
56 | bit_seq!(6; T, F, F, F, F; 0, 2, 3, 4, 5), | |
57 | bit_seq!(7; T, T; 0, 2), | |
58 | ]; | |
59 | ||
60 | const MODE_TREE_DIFF_PROBS: &[u8; 6] = &[171, 83, 199, 140, 125, 104]; | |
61 | ||
62 | const SHORT_MV_TREE: &[TokenSeq<u8>] = &[ | |
63 | bit_seq!(0; F, F, F; 0, 1, 2), | |
64 | bit_seq!(1; F, F, T; 0, 1, 2), | |
65 | bit_seq!(2; F, T, F; 0, 1, 3), | |
66 | bit_seq!(3; F, T, T; 0, 1, 3), | |
67 | bit_seq!(4; T, F, F; 0, 4, 5), | |
68 | bit_seq!(5; T, F, T; 0, 4, 5), | |
69 | bit_seq!(6; T, T, F; 0, 4, 6), | |
70 | bit_seq!(7; T, T, T; 0, 4, 6), | |
71 | ]; | |
72 | ||
73 | const EOB: i8 = 42; | |
74 | ||
75 | const DC_TREE: &[TokenSeq<i8>] = &[ | |
76 | bit_seq!( 0; F; 0), | |
77 | bit_seq!( 1; T, F; 0, 2), | |
78 | bit_seq!( 2; T, T, F, F; 0, 2, 3, 4), | |
79 | bit_seq!( 3; T, T, F, T, F; 0, 2, 3, 4, 5), | |
80 | bit_seq!( 4; T, T, F, T, T; 0, 2, 3, 4, 5), | |
81 | bit_seq!( -1; T, T, T, F, F; 0, 2, 3, 6, 7), | |
82 | bit_seq!( -2; T, T, T, F, T; 0, 2, 3, 6, 7), | |
83 | bit_seq!( -3; T, T, T, T, F, F; 0, 2, 3, 6, 8, 9), | |
84 | bit_seq!( -4; T, T, T, T, F, T; 0, 2, 3, 6, 8, 9), | |
85 | bit_seq!( -5; T, T, T, T, T, F; 0, 2, 3, 6, 8, 10), | |
86 | bit_seq!( -6; T, T, T, T, T, T; 0, 2, 3, 6, 8, 10), | |
87 | ]; | |
88 | ||
89 | const NZ_COEF_TREE: &[TokenSeq<i8>] = &[ | |
90 | bit_seq!( 1; F; 2), | |
91 | bit_seq!( 2; T, F, F; 2, 3, 4), | |
92 | bit_seq!( 3; T, F, T, F; 2, 3, 4, 5), | |
93 | bit_seq!( 4; T, F, T, T; 2, 3, 4, 5), | |
94 | bit_seq!( -1; T, T, F, F; 2, 3, 6, 7), | |
95 | bit_seq!( -2; T, T, F, T; 2, 3, 6, 7), | |
96 | bit_seq!( -3; T, T, T, F, F; 2, 3, 6, 8, 9), | |
97 | bit_seq!( -4; T, T, T, F, T; 2, 3, 6, 8, 9), | |
98 | bit_seq!( -5; T, T, T, T, F; 2, 3, 6, 8, 10), | |
99 | bit_seq!( -6; T, T, T, T, T; 2, 3, 6, 8, 10), | |
100 | ]; | |
101 | ||
102 | const COEF_TREE: &[TokenSeq<i8>] = &[ | |
103 | bit_seq!( 0; F, T; 0, 1), | |
104 | bit_seq!(EOB; F, F; 0, 1), | |
105 | bit_seq!( 1; T, F; 0, 2), | |
106 | bit_seq!( 2; T, T, F, F; 0, 2, 3, 4), | |
107 | bit_seq!( 3; T, T, F, T, F; 0, 2, 3, 4, 5), | |
108 | bit_seq!( 4; T, T, F, T, T; 0, 2, 3, 4, 5), | |
109 | bit_seq!( -1; T, T, T, F, F; 0, 2, 3, 6, 7), | |
110 | bit_seq!( -2; T, T, T, F, T; 0, 2, 3, 6, 7), | |
111 | bit_seq!( -3; T, T, T, T, F, F; 0, 2, 3, 6, 8, 9), | |
112 | bit_seq!( -4; T, T, T, T, F, T; 0, 2, 3, 6, 8, 9), | |
113 | bit_seq!( -5; T, T, T, T, T, F; 0, 2, 3, 6, 8, 10), | |
114 | bit_seq!( -6; T, T, T, T, T, T; 0, 2, 3, 6, 8, 10), | |
115 | ]; | |
116 | ||
117 | fn coef_to_cat(coef: i16) -> i8 { | |
118 | match coef.abs() { | |
119 | 0 ..=4 => coef.abs() as i8, | |
120 | 5 ..=6 => -1, | |
121 | 7 ..=10 => -2, | |
122 | 11..=18 => -3, | |
123 | 19..=34 => -4, | |
124 | 35..=66 => -5, | |
125 | _ => -6, | |
126 | } | |
127 | } | |
128 | ||
129 | const ZERO_RUN_TREE: &[TokenSeq<u8>] = &[ | |
130 | bit_seq!(1; F, F, F; 0, 1, 2), | |
131 | bit_seq!(2; F, F, T; 0, 1, 2), | |
132 | bit_seq!(3; F, T, F; 0, 1, 3), | |
133 | bit_seq!(4; F, T, T; 0, 1, 3), | |
134 | bit_seq!(5; T, F, F, F; 0, 4, 5, 6), | |
135 | bit_seq!(6; T, F, F, T; 0, 4, 5, 6), | |
136 | bit_seq!(7; T, F, T, F; 0, 4, 5, 7), | |
137 | bit_seq!(8; T, F, T, T; 0, 4, 5, 7), | |
138 | bit_seq!(9; T, T; 0, 4), | |
139 | ]; | |
140 | ||
141 | pub struct BoolEncoder<'a, 'b> { | |
142 | bw: &'a mut ByteWriter<'b>, | |
143 | val: u32, | |
144 | range: u32, | |
145 | bits: u8, | |
146 | saved: u8, | |
147 | run: usize, | |
148 | } | |
149 | ||
150 | impl<'a, 'b> BoolEncoder<'a, 'b> { | |
151 | pub fn new(bw: &'a mut ByteWriter<'b>) -> Self { | |
152 | Self { | |
153 | bw, | |
154 | val: 0, | |
155 | range: 255, | |
156 | bits: 0, | |
157 | saved: 0, | |
158 | run: 0, | |
159 | } | |
160 | } | |
161 | pub fn put_bool(&mut self, bit: bool, prob: u8) -> EncoderResult<()> { | |
162 | let split = 1 + (((self.range - 1) * u32::from(prob)) >> 8); | |
163 | if bit { | |
164 | self.range -= split; | |
165 | self.val += split; | |
166 | } else { | |
167 | self.range = split; | |
168 | } | |
169 | ||
170 | if self.range < 128 { | |
171 | self.renorm()?; | |
172 | } | |
173 | Ok(()) | |
174 | } | |
175 | fn flush_run(&mut self, overflow: bool) -> EncoderResult<()> { | |
176 | if self.run > 0 { | |
177 | self.bw.write_byte(self.saved + (overflow as u8))?; | |
178 | if !overflow { | |
179 | for _ in 1..self.run { | |
180 | self.bw.write_byte(0xFF)?; | |
181 | } | |
182 | } else { | |
183 | for _ in 1..self.run { | |
184 | self.bw.write_byte(0)?; | |
185 | } | |
186 | } | |
187 | self.run = 0; | |
188 | } | |
189 | Ok(()) | |
190 | } | |
191 | fn renorm(&mut self) -> EncoderResult<()> { | |
192 | let bits = (self.range.leading_zeros() & 7) as u8; | |
193 | self.range <<= bits; | |
194 | if self.bits + bits < 23 { | |
195 | self.bits += bits; | |
196 | self.val <<= bits; | |
197 | } else { | |
198 | for _ in 0..bits { | |
199 | if (self.bits == 23) && ((self.val >> 31) != 0) { | |
200 | self.flush_run(true)?; | |
201 | } | |
202 | self.val <<= 1; | |
203 | self.bits += 1; | |
204 | if self.bits == 24 { | |
205 | let tbyte = (self.val >> 24) as u8; | |
206 | let nbyte = (self.val >> 16) as u8; | |
207 | if tbyte < 0xFF { | |
208 | self.flush_run(false)?; | |
209 | if nbyte < 0xFE { | |
210 | self.bw.write_byte(tbyte)?; | |
211 | } else { | |
212 | self.saved = tbyte; | |
213 | self.run = 1; | |
214 | } | |
215 | } else { | |
216 | self.run += 1; | |
217 | } | |
218 | self.val &= 0xFFFFFF; | |
219 | self.bits -= 8; | |
220 | } | |
221 | } | |
222 | } | |
223 | Ok(()) | |
224 | } | |
225 | pub fn flush(mut self) -> EncoderResult<()> { | |
226 | self.flush_run(false)?; | |
227 | self.val <<= 24 - self.bits; | |
228 | self.bw.write_u32be(self.val)?; | |
229 | Ok(()) | |
230 | } | |
231 | ||
232 | pub fn put_bits(&mut self, val: u32, len: u8) -> EncoderResult<()> { | |
233 | let mut mask = 1 << (len - 1); | |
234 | while mask != 0 { | |
235 | self.put_bool((val & mask) != 0, 128)?; | |
236 | mask >>= 1; | |
237 | } | |
238 | Ok(()) | |
239 | } | |
240 | fn put_probability(&mut self, prob: u8) -> EncoderResult<()> { | |
241 | self.put_bits(u32::from(prob >> 1), 7) | |
242 | } | |
243 | fn encode_probability(&mut self, new: u8, old: u8, prob: u8) -> EncoderResult<()> { | |
244 | self.put_bool(new != old, prob)?; | |
245 | if new != old { | |
246 | self.put_probability(new)?; | |
247 | } | |
248 | Ok(()) | |
249 | } | |
250 | pub fn write_el<T: PartialEq>(&mut self, el: T, tree: &[TokenSeq<T>], probs: &[u8]) -> EncoderResult<()> { | |
251 | for entry in tree.iter() { | |
252 | if entry.val == el { | |
253 | for seq in entry.seq.iter() { | |
254 | self.put_bool(seq.bit, probs[seq.idx as usize])?; | |
255 | } | |
256 | return Ok(()); | |
257 | } | |
258 | } | |
259 | Err(EncoderError::Bug) | |
260 | } | |
261 | fn write_cat(&mut self, cat: i8, tree: &[TokenSeq<i8>], tok_probs: &[u8], val_probs: &[u8; 11]) -> EncoderResult<()> { | |
262 | for entry in tree.iter() { | |
263 | if entry.val == cat { | |
264 | for seq in entry.seq.iter() { | |
265 | let prob = if seq.idx < 5 { | |
266 | tok_probs[seq.idx as usize] | |
267 | } else { | |
268 | val_probs[seq.idx as usize] | |
269 | }; | |
270 | self.put_bool(seq.bit, prob)?; | |
271 | } | |
272 | return Ok(()); | |
273 | } | |
274 | } | |
275 | Err(EncoderError::Bug) | |
276 | } | |
277 | fn write_large_coef(&mut self, val: i16, cat: usize) -> EncoderResult<()> { | |
278 | let base = VP56_COEF_BASE[cat]; | |
279 | let mut probs = VP56_COEF_ADD_PROBS[cat].iter(); | |
280 | let add = val.abs() - base; | |
281 | let mut mask = 1 << (VP6_COEF_ADD_BITS[cat] - 1); | |
282 | while mask != 0 { | |
283 | self.put_bool((add & mask) != 0, *probs.next().unwrap())?; | |
284 | mask >>= 1; | |
285 | } | |
286 | self.put_bool(val < 0, 128)?; | |
287 | ||
288 | Ok(()) | |
289 | } | |
290 | fn write_dc(&mut self, val: i16, tok_probs: &[u8; 5], val_probs: &[u8; 11]) -> EncoderResult<()> { | |
291 | let cat = coef_to_cat(val); | |
292 | self.write_cat(cat, DC_TREE, tok_probs, val_probs)?; | |
293 | if cat < 0 { | |
294 | self.write_large_coef(val, (-cat - 1) as usize)?; | |
295 | } else if val != 0 { | |
296 | self.put_bool(val < 0, 128)?; | |
297 | } | |
298 | Ok(()) | |
299 | } | |
300 | fn write_ac(&mut self, val: i16, tree: &[TokenSeq<i8>], probs: &[u8; 11]) -> EncoderResult<()> { | |
301 | let cat = coef_to_cat(val); | |
302 | self.write_cat(cat, tree, probs, probs)?; | |
303 | if cat < 0 { | |
304 | self.write_large_coef(val, (-cat - 1) as usize)?; | |
305 | } else if val != 0 { | |
306 | self.put_bool(val < 0, 128)?; | |
307 | } | |
308 | Ok(()) | |
309 | } | |
310 | fn write_zero_run(&mut self, val: usize, probs: &[u8; 14]) -> EncoderResult<()> { | |
311 | self.write_el(val.min(9) as u8, ZERO_RUN_TREE, probs)?; | |
312 | if val >= 9 { | |
313 | let add = val - 9; | |
314 | for i in 0..6 { | |
315 | self.put_bool(((add >> i) & 1) != 0, probs[i + 8])?; | |
316 | } | |
317 | } | |
318 | Ok(()) | |
319 | } | |
320 | } | |
321 | ||
322 | fn rescale_mb_mode_prob(prob: u32, total: u32) -> u8 { | |
323 | (255 * prob / (1 + total)) as u8 | |
324 | } | |
325 | ||
326 | fn calc_mb_model_probs(prob_xmitted: &[u8; 20], mbtype_models: &mut [VP56MBTypeModel; 10]) { | |
327 | for mode in 0..10 { | |
328 | let mdl = &mut mbtype_models[mode]; | |
329 | let mut cnt = [0u32; 10]; | |
330 | let mut total = 0; | |
331 | for i in 0..10 { | |
332 | if i == mode { continue; } | |
333 | cnt[i] = 100 * u32::from(prob_xmitted[i * 2]); | |
334 | total += cnt[i]; | |
335 | } | |
336 | let sum = u32::from(prob_xmitted[mode * 2]) + u32::from(prob_xmitted[mode * 2 + 1]); | |
337 | mdl.probs[9] = 255 - rescale_mb_mode_prob(u32::from(prob_xmitted[mode * 2 + 1]), sum); | |
338 | ||
339 | let inter_mv0_weight = (cnt[0] as u32) + (cnt[2] as u32); | |
340 | let inter_mv1_weight = (cnt[3] as u32) + (cnt[4] as u32); | |
341 | let gold_mv0_weight = (cnt[5] as u32) + (cnt[6] as u32); | |
342 | let gold_mv1_weight = (cnt[8] as u32) + (cnt[9] as u32); | |
343 | let mix_weight = (cnt[1] as u32) + (cnt[7] as u32); | |
344 | mdl.probs[0] = 1 + rescale_mb_mode_prob(inter_mv0_weight + inter_mv1_weight, total); | |
345 | mdl.probs[1] = 1 + rescale_mb_mode_prob(inter_mv0_weight, inter_mv0_weight + inter_mv1_weight); | |
346 | mdl.probs[2] = 1 + rescale_mb_mode_prob(mix_weight, mix_weight + gold_mv0_weight + gold_mv1_weight); | |
347 | mdl.probs[3] = 1 + rescale_mb_mode_prob(cnt[0] as u32, inter_mv0_weight); | |
348 | mdl.probs[4] = 1 + rescale_mb_mode_prob(cnt[3] as u32, inter_mv1_weight); | |
349 | mdl.probs[5] = 1 + rescale_mb_mode_prob(cnt[1], mix_weight); | |
350 | mdl.probs[6] = 1 + rescale_mb_mode_prob(gold_mv0_weight, gold_mv0_weight + gold_mv1_weight); | |
351 | mdl.probs[7] = 1 + rescale_mb_mode_prob(cnt[5], gold_mv0_weight); | |
352 | mdl.probs[8] = 1 + rescale_mb_mode_prob(cnt[8], gold_mv1_weight); | |
353 | } | |
354 | } | |
355 | ||
356 | fn calc_mbtype_bits(prob_xmitted: &[u8; 20], stats: &[[usize; 10]; 10], mdl: &mut [VP56MBTypeModel; 10]) -> u32 { | |
357 | const MB_TYPES: [VPMBType; 10] = [ | |
358 | VPMBType::InterNoMV, | |
359 | VPMBType::Intra, | |
360 | VPMBType::InterMV, | |
361 | VPMBType::InterNearest, | |
362 | VPMBType::InterNear, | |
363 | VPMBType::GoldenNoMV, | |
364 | VPMBType::GoldenMV, | |
365 | VPMBType::InterFourMV, | |
366 | VPMBType::GoldenNearest, | |
367 | VPMBType::GoldenNear | |
368 | ]; | |
369 | ||
370 | calc_mb_model_probs(prob_xmitted, mdl); | |
371 | let mut nits = 0; | |
372 | for (last, (srow, mdl)) in stats.iter().zip(mdl.iter()).enumerate() { | |
373 | for (cur, &ccount) in srow.iter().enumerate() { | |
374 | let ccount = ccount as u32; | |
375 | nits += Estimator::est_nits(cur == last, mdl.probs[9]) * ccount; | |
376 | if cur != last { | |
377 | for entry in MODE_TREE.iter() { | |
378 | if entry.val == MB_TYPES[cur] { | |
379 | for seq in entry.seq.iter() { | |
380 | nits += Estimator::est_nits(seq.bit, mdl.probs[seq.idx as usize]) * ccount; | |
381 | } | |
382 | break; | |
383 | } | |
384 | } | |
385 | } | |
386 | } | |
387 | } | |
388 | ||
389 | Estimator::nits_to_bits(nits) | |
390 | } | |
391 | ||
392 | fn find_model_vq(prob_xmitted: &[u8; 20], vq: &[[u8; 20]; 16]) -> usize { | |
393 | let mut best_idx = 0; | |
394 | let mut best_dist = i16::MAX; | |
395 | ||
396 | for (idx, row) in vq.iter().enumerate() { | |
397 | let mut dist = 0; | |
398 | for i in 0..20 { | |
399 | let a = prob_xmitted[i ^ 1]; | |
400 | let b = row[i]; | |
401 | dist += (i16::from(a) - i16::from(b)).abs(); | |
402 | } | |
403 | if dist == 0 { | |
404 | return idx; | |
405 | } | |
406 | if dist < best_dist { | |
407 | best_dist = dist; | |
408 | best_idx = idx; | |
409 | } | |
410 | } | |
411 | ||
412 | best_idx | |
413 | } | |
414 | ||
415 | // todo per-delta decision, incremental updates and such | |
416 | fn deltas_bits(probs: &[u8; 20], base: &[u8; 20], stats: &[[usize; 10]; 10], tmp: &mut [VP56MBTypeModel; 10], deltas: &mut [i16; 20]) -> u32 { | |
417 | const DELTA_PROBS: [u8; 8] = [ | |
418 | PROB_BITS[205], | |
419 | PROB_BITS[256 - 205] + PROB_BITS[171] + PROB_BITS[256 - 83] + PROB_BITS[128], | |
420 | PROB_BITS[256 - 205] + PROB_BITS[171] + PROB_BITS[83] + PROB_BITS[128], | |
421 | PROB_BITS[256 - 205] + PROB_BITS[256 - 171] + PROB_BITS[199] + PROB_BITS[256 - 140] + PROB_BITS[128], | |
422 | PROB_BITS[256 - 205] + PROB_BITS[256 - 171] + PROB_BITS[199] + PROB_BITS[140] + PROB_BITS[256 - 125] + PROB_BITS[128], | |
423 | PROB_BITS[256 - 205] + PROB_BITS[256 - 171] + PROB_BITS[199] + PROB_BITS[140] + PROB_BITS[125] + PROB_BITS[256 - 104] + PROB_BITS[128], | |
424 | PROB_BITS[256 - 205] + PROB_BITS[256 - 171] + PROB_BITS[199] + PROB_BITS[140] + PROB_BITS[125] + PROB_BITS[104] + PROB_BITS[128], | |
425 | PROB_BITS[256 - 205] + PROB_BITS[256 - 171] + PROB_BITS[256 - 199] + 8 * PROB_BITS[128], | |
426 | ]; | |
427 | ||
428 | let mut nits = 0; | |
429 | let mut tprobs = [0u8; 20]; | |
430 | ||
431 | for i in 0..20 { | |
432 | let old = i16::from(base[i]); | |
433 | let new = i16::from(probs[i]); | |
434 | let mut diff = (new - old) & !3; | |
435 | if old + diff > 255 { | |
436 | diff -= 4; | |
437 | } else if old + diff < 0 || (old + diff == 0 && new != 0) { | |
438 | diff += 4; | |
439 | } | |
440 | tprobs[i] = (old + diff) as u8; | |
441 | deltas[i] = diff; | |
442 | nits += u32::from(DELTA_PROBS[(diff.abs() >> 2).min(7) as usize]); | |
443 | } | |
444 | ||
445 | Estimator::nits_to_bits(nits) + calc_mbtype_bits(&tprobs, stats, tmp) + 5 | |
446 | } | |
447 | ||
448 | pub fn encode_mode_prob_models(bc: &mut BoolEncoder, models: &mut VP56Models, pmodels: &VP56Models, stats: &[[[usize; 10]; 10]; 3]) -> EncoderResult<()> { | |
449 | let mut tmp = [VP56MBTypeModel::default(); 10]; | |
450 | let mut tprob = [0; 20]; | |
451 | for ctx in 0..3 { | |
452 | let mut models_changed = models.prob_xmitted[ctx] != pmodels.prob_xmitted[ctx]; | |
453 | if models_changed { | |
454 | let old_bits = calc_mbtype_bits(&pmodels.prob_xmitted[ctx], &stats[ctx], &mut tmp); | |
455 | let new_bits = calc_mbtype_bits(&models.prob_xmitted[ctx], &stats[ctx], &mut tmp) + 4; | |
456 | if new_bits < old_bits { | |
457 | let idx = find_model_vq(&models.prob_xmitted[ctx], &VP56_MODE_VQ[ctx]); | |
458 | for i in 0..20 { | |
459 | tprob[i ^ 1] = VP56_MODE_VQ[ctx][idx][i]; | |
460 | } | |
461 | let vq_bits = calc_mbtype_bits(&tprob, &stats[ctx], &mut tmp) + 4; | |
462 | if vq_bits < old_bits { | |
463 | bc.put_bool(true, 174)?; | |
464 | bc.put_bits(idx as u32, 4)?; | |
465 | let mut diffs_present = tprob != models.prob_xmitted[ctx]; | |
466 | let mut deltas = [0; 20]; | |
467 | let delta_cost = deltas_bits(&models.prob_xmitted[ctx], &tprob, &stats[ctx], &mut tmp, &mut deltas); | |
468 | if delta_cost + 1 >= new_bits { | |
469 | diffs_present = false; | |
470 | } | |
471 | if diffs_present { | |
472 | bc.put_bool(true, 254)?; | |
473 | for i in 0..20 { | |
474 | let diff = deltas[i ^ 1] >> 2; | |
475 | bc.put_bool(diff != 0, 205)?; | |
476 | if diff != 0 { | |
477 | let d0 = diff.abs().min(7) as u8; | |
478 | bc.put_bool(diff < 0, 128)?; | |
479 | bc.write_el(d0, MODE_TREE_DIFF, MODE_TREE_DIFF_PROBS)?; | |
480 | if d0 == 7 { | |
481 | bc.put_bits(diff.abs() as u32, 7)?; | |
482 | } | |
483 | tprob[i ^ 1] = (i16::from(tprob[i ^ 1]) + deltas[i ^ 1]) as u8; | |
484 | } | |
485 | } | |
486 | } | |
487 | if !diffs_present { | |
488 | bc.put_bool(false, 254)?; | |
489 | } | |
490 | } else { | |
491 | models_changed = false; | |
492 | } | |
493 | } else { | |
494 | models_changed = false; | |
495 | } | |
496 | } | |
497 | if !models_changed { | |
498 | bc.put_bool(false, 174)?; | |
499 | bc.put_bool(false, 254)?; | |
500 | models.prob_xmitted[ctx] = pmodels.prob_xmitted[ctx]; | |
501 | } else { | |
502 | models.prob_xmitted[ctx] = tprob; | |
503 | } | |
504 | } | |
505 | for ctx in 0..3 { | |
506 | let prob_xmitted = &models.prob_xmitted[ctx]; | |
507 | calc_mb_model_probs(prob_xmitted, &mut models.mbtype_models[ctx]); | |
508 | } | |
509 | Ok(()) | |
510 | } | |
511 | ||
512 | pub fn encode_mv_models(bc: &mut BoolEncoder, models: &[VP56MVModel; 2], pmodels: &[VP56MVModel; 2]) -> EncoderResult<()> { | |
513 | for (i, (mdl, pmdl)) in models.iter().zip(pmodels.iter()).enumerate() { | |
514 | bc.encode_probability(mdl.nz_prob, pmdl.nz_prob, HAS_NZ_PROB[i])?; | |
515 | bc.encode_probability(mdl.sign_prob, pmdl.sign_prob, HAS_SIGN_PROB[i])?; | |
516 | } | |
517 | for (i, (mdl, pmdl)) in models.iter().zip(pmodels.iter()).enumerate() { | |
518 | for (&coded_prob, (&prob, &pprob)) in HAS_TREE_PROB[i].iter().zip(mdl.tree_probs.iter().zip(pmdl.tree_probs.iter())) { | |
519 | bc.encode_probability(prob, pprob, coded_prob)?; | |
520 | } | |
521 | } | |
522 | for (i, (mdl, pmdl)) in models.iter().zip(pmodels.iter()).enumerate() { | |
523 | for (&coded_prob, (&prob, &pprob)) in HAS_RAW_PROB[i].iter().zip(mdl.raw_probs.iter().zip(pmdl.raw_probs.iter())) { | |
524 | bc.encode_probability(prob, pprob, coded_prob)?; | |
525 | } | |
526 | } | |
527 | Ok(()) | |
528 | } | |
529 | ||
530 | pub fn encode_coeff_models(bc: &mut BoolEncoder, models: &mut VP56Models, pmodels: &VP56Models, is_intra: bool, interlaced: bool) -> EncoderResult<()> { | |
531 | let mut def_prob = [128u8; 11]; | |
532 | for plane in 0..2 { | |
533 | for i in 0..11 { | |
534 | let pprob = pmodels.coeff_models[plane].dc_value_probs[i]; | |
535 | let prob = models.coeff_models[plane].dc_value_probs[i]; | |
536 | let changed = (is_intra && prob != def_prob[i]) || (!is_intra && prob != pprob); | |
537 | bc.put_bool(changed, HAS_COEF_PROBS[plane][i])?; | |
538 | if changed { | |
539 | bc.put_probability(prob)?; | |
540 | def_prob[i] = prob; | |
541 | } | |
542 | } | |
543 | } | |
544 | ||
545 | bc.put_bool(false, 128)?; | |
546 | reset_scan(&mut models.vp6models, interlaced); | |
547 | /* for scan | |
548 | for i in 1..64 { | |
549 | if bc.read_prob(HAS_SCAN_UPD_PROBS[i]) { | |
550 | models.vp6models.scan_order[i] = bc.read_bits(4) as usize; | |
551 | } | |
552 | } | |
553 | update_scan(&mut models.vp6models); | |
554 | */ | |
555 | ||
556 | for comp in 0..2 { | |
557 | for i in 0..14 { | |
558 | bc.encode_probability(models.vp6models.zero_run_probs[comp][i], pmodels.vp6models.zero_run_probs[comp][i], HAS_ZERO_RUN_PROBS[comp][i])?; | |
559 | } | |
560 | } | |
561 | ||
562 | for ctype in 0..3 { | |
563 | for plane in 0..2 { | |
564 | for group in 0..6 { | |
565 | for i in 0..11 { | |
566 | let pprob = pmodels.coeff_models[plane].ac_val_probs[ctype][group][i]; | |
567 | let prob = models.coeff_models[plane].ac_val_probs[ctype][group][i]; | |
568 | let changed = (is_intra && prob != def_prob[i]) || (!is_intra && prob != pprob); | |
569 | bc.put_bool(changed, VP6_AC_PROBS[ctype][plane][group][i])?; | |
570 | if changed { | |
571 | bc.put_probability(prob)?; | |
572 | def_prob[i] = prob; | |
573 | } | |
574 | } | |
575 | } | |
576 | } | |
577 | } | |
578 | ||
579 | for plane in 0..2 { | |
580 | let mdl = &mut models.coeff_models[plane]; | |
581 | for i in 0..3 { | |
582 | for k in 0..5 { | |
583 | mdl.dc_token_probs[0][i][k] = rescale_prob(mdl.dc_value_probs[k], &VP6_DC_WEIGHTS[k][i], 255); | |
584 | } | |
585 | } | |
586 | } | |
587 | Ok(()) | |
588 | } | |
589 | ||
590 | pub fn encode_block(bc: &mut BoolEncoder, blk: &[i16; 64], dc_mode: usize, model: &VP56CoeffModel, vp6model: &VP6Models) -> EncoderResult<()> { | |
591 | let mut last = 64; | |
592 | for i in (0..64).rev() { | |
593 | if blk[vp6model.zigzag[i]] != 0 { | |
594 | last = i; | |
595 | break; | |
596 | } | |
597 | } | |
598 | if last < 64 { | |
599 | bc.write_dc(blk[0], &model.dc_token_probs[0][dc_mode], &model.dc_value_probs)?; | |
600 | let mut idx = 1; | |
601 | let mut last_idx = 0; | |
602 | let mut last_val = blk[0]; | |
603 | while idx <= last { | |
604 | let val = blk[vp6model.zigzag[idx]]; | |
605 | let has_nnz = (idx == 1) || (last_val != 0); | |
606 | if (val != 0) || has_nnz { | |
607 | if last_val == 0 && idx != 1 { | |
608 | let zrun = idx - last_idx; | |
609 | bc.write_zero_run(zrun, &vp6model.zero_run_probs[if last_idx + 1 >= 7 { 1 } else { 0 }])?; | |
610 | } | |
611 | let ac_band = VP6_IDX_TO_AC_BAND[idx]; | |
612 | let ac_mode = last_val.abs().min(2) as usize; | |
613 | let tree = if has_nnz { COEF_TREE } else { NZ_COEF_TREE }; | |
614 | bc.write_ac(val, tree, &model.ac_val_probs[ac_mode][ac_band])?; | |
615 | last_val = val; | |
616 | last_idx = idx; | |
617 | } | |
618 | idx += 1; | |
619 | } | |
620 | if idx < 64 { | |
621 | let ac_band = VP6_IDX_TO_AC_BAND[idx]; | |
622 | let ac_mode = last_val.abs().min(2) as usize; | |
623 | bc.write_el(EOB, COEF_TREE, &model.ac_val_probs[ac_mode][ac_band])?; | |
624 | } | |
625 | } else { | |
626 | bc.write_cat(0, DC_TREE, &model.dc_token_probs[0][dc_mode], &model.dc_value_probs)?; | |
627 | let ac_band = VP6_IDX_TO_AC_BAND[1]; | |
628 | bc.write_el(EOB, COEF_TREE, &model.ac_val_probs[0][ac_band])?; | |
629 | } | |
630 | Ok(()) | |
631 | } | |
632 | ||
633 | fn map_mb_type(mbtype: VPMBType) -> usize { | |
634 | match mbtype { | |
635 | VPMBType::InterNoMV => 0, | |
636 | VPMBType::Intra => 1, | |
637 | VPMBType::InterMV => 2, | |
638 | VPMBType::InterNearest => 3, | |
639 | VPMBType::InterNear => 4, | |
640 | VPMBType::GoldenNoMV => 5, | |
641 | VPMBType::GoldenMV => 6, | |
642 | VPMBType::InterFourMV => 7, | |
643 | VPMBType::GoldenNearest => 8, | |
644 | VPMBType::GoldenNear => 9, | |
645 | } | |
646 | } | |
647 | ||
648 | pub fn encode_mb_type(bc: &mut BoolEncoder, mb_type: VPMBType, last_mb_type: VPMBType, ctx: usize, model: &VP56Models) -> EncoderResult<()> { | |
649 | let probs = &model.mbtype_models[ctx][map_mb_type(last_mb_type)].probs; | |
650 | bc.put_bool(mb_type == last_mb_type, probs[9])?; | |
651 | if mb_type != last_mb_type { | |
652 | bc.write_el(mb_type, MODE_TREE, probs)?; | |
653 | } | |
654 | Ok(()) | |
655 | } | |
656 | ||
657 | fn encode_mv_component(bc: &mut BoolEncoder, mv: i16, model: &VP56MVModel) -> EncoderResult<()> { | |
658 | let aval = mv.abs(); | |
659 | bc.put_bool(aval >= 8, model.nz_prob)?; | |
660 | if aval < 8 { | |
661 | bc.write_el(aval as u8, SHORT_MV_TREE, &model.tree_probs)?; | |
662 | } else { | |
663 | for &ord in LONG_VECTOR_ORDER.iter() { | |
664 | bc.put_bool(((aval >> ord) & 1) != 0, model.raw_probs[ord])?; | |
665 | } | |
666 | if (aval & 0xF0) != 0 { | |
667 | bc.put_bool((aval & (1 << 3)) != 0, model.raw_probs[3])?; | |
668 | } | |
669 | } | |
670 | if aval != 0 { | |
671 | bc.put_bool(mv < 0, model.sign_prob)?; | |
672 | } | |
673 | Ok(()) | |
674 | } | |
675 | ||
676 | pub fn encode_mv(bc: &mut BoolEncoder, mv: MV, model: &VP56Models) -> EncoderResult<()> { | |
677 | encode_mv_component(bc, mv.x, &model.mv_models[0])?; | |
678 | encode_mv_component(bc, mv.y, &model.mv_models[1])?; | |
679 | Ok(()) | |
680 | } | |
681 | ||
682 | struct Estimator {} | |
683 | ||
684 | impl Estimator { | |
685 | fn new() -> Self { Self{} } | |
686 | fn write_el<T: PartialEq>(&self, el: T, tree: &[TokenSeq<T>], probs: &mut [ProbCounter]) { | |
687 | for entry in tree.iter() { | |
688 | if entry.val == el { | |
689 | for seq in entry.seq.iter() { | |
690 | probs[seq.idx as usize].add(seq.bit); | |
691 | } | |
692 | return; | |
693 | } | |
694 | } | |
695 | } | |
696 | fn write_cat(&self, cat: i8, tree: &[TokenSeq<i8>], probs: &mut [ProbCounter; 11]) { | |
697 | for entry in tree.iter() { | |
698 | if entry.val == cat { | |
699 | for seq in entry.seq.iter() { | |
700 | probs[seq.idx as usize].add(seq.bit); | |
701 | } | |
702 | return; | |
703 | } | |
704 | } | |
705 | } | |
706 | fn write_dc(&self, val: i16, probs: &mut [ProbCounter; 11]) { | |
707 | self.write_cat(coef_to_cat(val), DC_TREE, probs); | |
708 | } | |
709 | fn write_ac(&self, val: i16, tree: &[TokenSeq<i8>], probs: &mut [ProbCounter; 11]) { | |
710 | self.write_cat(coef_to_cat(val), tree, probs); | |
711 | } | |
712 | fn write_zero_run(&self, val: usize, probs: &mut [ProbCounter; 14]) { | |
713 | self.write_el(val.min(9) as u8, ZERO_RUN_TREE, probs); | |
714 | if val >= 9 { | |
715 | let add = val - 9; | |
716 | for i in 0..6 { | |
717 | probs[i + 8].add(((add >> i) & 1) != 0); | |
718 | } | |
719 | } | |
720 | } | |
721 | fn est_nits(bit: bool, prob: u8) -> u32 { | |
722 | if !bit { | |
723 | u32::from(PROB_BITS[prob as usize]) | |
724 | } else { | |
725 | u32::from(PROB_BITS[256 - (prob as usize)]) | |
726 | } | |
727 | } | |
728 | fn nits_to_bits(nits: u32) -> u32 { (nits + 7) >> 3 } | |
729 | } | |
730 | ||
731 | pub fn estimate_block(blk: &[i16; 64], _dc_mode: usize, model: &mut VP56CoeffModelStat, vp6model: &mut VP6ModelsStat, scan: &[usize; 64]) { | |
732 | let bc = Estimator::new(); | |
733 | ||
734 | let mut last = 64; | |
735 | for i in (0..64).rev() { | |
736 | if blk[scan[i]] != 0 { | |
737 | last = i; | |
738 | break; | |
739 | } | |
740 | } | |
741 | if last < 64 { | |
742 | bc.write_dc(blk[0], &mut model.dc_value_probs); | |
743 | let mut idx = 1; | |
744 | let mut last_idx = 0; | |
745 | let mut last_val = blk[0]; | |
746 | while idx <= last { | |
747 | let val = blk[scan[idx]]; | |
748 | let has_nnz = (idx == 1) || (last_val != 0); | |
749 | if (val != 0) || has_nnz { | |
750 | if last_val == 0 && idx != 1 { | |
751 | let zrun = idx - last_idx; | |
752 | bc.write_zero_run(zrun, &mut vp6model.zero_run_probs[if last_idx + 1 >= 7 { 1 } else { 0 }]); | |
753 | } | |
754 | let ac_band = VP6_IDX_TO_AC_BAND[idx]; | |
755 | let ac_mode = last_val.abs().min(2) as usize; | |
756 | let tree = if has_nnz { COEF_TREE } else { NZ_COEF_TREE }; | |
757 | bc.write_ac(val, tree, &mut model.ac_val_probs[ac_mode][ac_band]); | |
758 | last_val = val; | |
759 | last_idx = idx; | |
760 | } | |
761 | idx += 1; | |
762 | } | |
763 | if idx < 64 { | |
764 | let ac_band = VP6_IDX_TO_AC_BAND[idx]; | |
765 | let ac_mode = last_val.abs().min(2) as usize; | |
766 | bc.write_el(EOB, COEF_TREE, &mut model.ac_val_probs[ac_mode][ac_band]); | |
767 | } | |
768 | } else { | |
769 | bc.write_cat(0, DC_TREE, &mut model.dc_value_probs); | |
770 | let ac_band = VP6_IDX_TO_AC_BAND[1]; | |
771 | bc.write_el(EOB, COEF_TREE, &mut model.ac_val_probs[0][ac_band]); | |
772 | } | |
773 | } | |
774 | ||
775 | pub fn estimate_mb_type(mb_type: VPMBType, last_mb_type: VPMBType, ctx: usize, model: &mut VP56ModelsStat) { | |
776 | model.mbtype_models[ctx][map_mb_type(last_mb_type)][map_mb_type(mb_type)] += 1; | |
777 | } | |
778 | ||
779 | fn estimate_mv_component(mv: i16, model: &mut VP56MVModelStat) { | |
780 | let bc = Estimator::new(); | |
781 | let aval = mv.abs(); | |
782 | model.nz_prob.add(aval >= 8); | |
783 | if aval < 8 { | |
784 | bc.write_el(aval as u8, SHORT_MV_TREE, &mut model.tree_probs); | |
785 | } else { | |
786 | for &ord in LONG_VECTOR_ORDER.iter() { | |
787 | model.raw_probs[ord].add(((aval >> ord) & 1) != 0); | |
788 | } | |
789 | if (aval & 0xF0) != 0 { | |
790 | model.raw_probs[3].add((aval & (1 << 3)) != 0); | |
791 | } | |
792 | } | |
793 | if aval != 0 { | |
794 | model.sign_prob.add(mv < 0); | |
795 | } | |
796 | } | |
797 | ||
798 | pub fn estimate_mv(mv: MV, model: &mut VP56ModelsStat) { | |
799 | estimate_mv_component(mv.x, &mut model.mv_models[0]); | |
800 | estimate_mv_component(mv.y, &mut model.mv_models[1]); | |
801 | } | |
802 | ||
803 | const VP56_MODE_VQ: [[[u8; 20]; 16]; 3] = [ | |
804 | [ | |
805 | [ 9, 15, 32, 25, 7, 19, 9, 21, 1, 12, 14, 12, 3, 18, 14, 23, 3, 10, 0, 4 ], | |
806 | [ 48, 39, 1, 2, 11, 27, 29, 44, 7, 27, 1, 4, 0, 3, 1, 6, 1, 2, 0, 0 ], | |
807 | [ 21, 32, 1, 2, 4, 10, 32, 43, 6, 23, 2, 3, 1, 19, 1, 6, 12, 21, 0, 7 ], | |
808 | [ 69, 83, 0, 0, 0, 2, 10, 29, 3, 12, 0, 1, 0, 3, 0, 3, 2, 2, 0, 0 ], | |
809 | [ 11, 20, 1, 4, 18, 36, 43, 48, 13, 35, 0, 2, 0, 5, 3, 12, 1, 2, 0, 0 ], | |
810 | [ 70, 44, 0, 1, 2, 10, 37, 46, 8, 26, 0, 2, 0, 2, 0, 2, 0, 1, 0, 0 ], | |
811 | [ 8, 15, 0, 1, 8, 21, 74, 53, 22, 42, 0, 1, 0, 2, 0, 3, 1, 2, 0, 0 ], | |
812 | [ 141, 42, 0, 0, 1, 4, 11, 24, 1, 11, 0, 1, 0, 1, 0, 2, 0, 0, 0, 0 ], | |
813 | [ 8, 19, 4, 10, 24, 45, 21, 37, 9, 29, 0, 3, 1, 7, 11, 25, 0, 2, 0, 1 ], | |
814 | [ 46, 42, 0, 1, 2, 10, 54, 51, 10, 30, 0, 2, 0, 2, 0, 1, 0, 1, 0, 0 ], | |
815 | [ 28, 32, 0, 0, 3, 10, 75, 51, 14, 33, 0, 1, 0, 2, 0, 1, 1, 2, 0, 0 ], | |
816 | [ 100, 46, 0, 1, 3, 9, 21, 37, 5, 20, 0, 1, 0, 2, 1, 2, 0, 1, 0, 0 ], | |
817 | [ 27, 29, 0, 1, 9, 25, 53, 51, 12, 34, 0, 1, 0, 3, 1, 5, 0, 2, 0, 0 ], | |
818 | [ 80, 38, 0, 0, 1, 4, 69, 33, 5, 16, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0 ], | |
819 | [ 16, 20, 0, 0, 2, 8, 104, 49, 15, 33, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0 ], | |
820 | [ 194, 16, 0, 0, 1, 1, 1, 9, 1, 3, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0 ], | |
821 | ], [ | |
822 | [ 41, 22, 1, 0, 1, 31, 0, 0, 0, 0, 0, 1, 1, 7, 0, 1, 98, 25, 4, 10 ], | |
823 | [ 123, 37, 6, 4, 1, 27, 0, 0, 0, 0, 5, 8, 1, 7, 0, 1, 12, 10, 0, 2 ], | |
824 | [ 26, 14, 14, 12, 0, 24, 0, 0, 0, 0, 55, 17, 1, 9, 0, 36, 5, 7, 1, 3 ], | |
825 | [ 209, 5, 0, 0, 0, 27, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0 ], | |
826 | [ 2, 5, 4, 5, 0, 121, 0, 0, 0, 0, 0, 3, 2, 4, 1, 4, 2, 2, 0, 1 ], | |
827 | [ 175, 5, 0, 1, 0, 48, 0, 0, 0, 0, 0, 2, 0, 1, 0, 2, 0, 1, 0, 0 ], | |
828 | [ 83, 5, 2, 3, 0, 102, 0, 0, 0, 0, 1, 3, 0, 2, 0, 1, 0, 0, 0, 0 ], | |
829 | [ 233, 6, 0, 0, 0, 8, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0 ], | |
830 | [ 34, 16, 112, 21, 1, 28, 0, 0, 0, 0, 6, 8, 1, 7, 0, 3, 2, 5, 0, 2 ], | |
831 | [ 159, 35, 2, 2, 0, 25, 0, 0, 0, 0, 3, 6, 0, 5, 0, 1, 4, 4, 0, 1 ], | |
832 | [ 75, 39, 5, 7, 2, 48, 0, 0, 0, 0, 3, 11, 2, 16, 1, 4, 7, 10, 0, 2 ], | |
833 | [ 212, 21, 0, 1, 0, 9, 0, 0, 0, 0, 1, 2, 0, 2, 0, 0, 2, 2, 0, 0 ], | |
834 | [ 4, 2, 0, 0, 0, 172, 0, 0, 0, 0, 0, 1, 0, 2, 0, 0, 2, 0, 0, 0 ], | |
835 | [ 187, 22, 1, 1, 0, 17, 0, 0, 0, 0, 3, 6, 0, 4, 0, 1, 4, 4, 0, 1 ], | |
836 | [ 133, 6, 1, 2, 1, 70, 0, 0, 0, 0, 0, 2, 0, 4, 0, 3, 1, 1, 0, 0 ], | |
837 | [ 251, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 ], | |
838 | ], [ | |
839 | [ 2, 3, 2, 3, 0, 2, 0, 2, 0, 0, 11, 4, 1, 4, 0, 2, 3, 2, 0, 4 ], | |
840 | [ 49, 46, 3, 4, 7, 31, 42, 41, 0, 0, 2, 6, 1, 7, 1, 4, 2, 4, 0, 1 ], | |
841 | [ 26, 25, 1, 1, 2, 10, 67, 39, 0, 0, 1, 1, 0, 14, 0, 2, 31, 26, 1, 6 ], | |
842 | [ 103, 46, 1, 2, 2, 10, 33, 42, 0, 0, 1, 4, 0, 3, 0, 1, 1, 3, 0, 0 ], | |
843 | [ 14, 31, 9, 13, 14, 54, 22, 29, 0, 0, 2, 6, 4, 18, 6, 13, 1, 5, 0, 1 ], | |
844 | [ 85, 39, 0, 0, 1, 9, 69, 40, 0, 0, 0, 1, 0, 3, 0, 1, 2, 3, 0, 0 ], | |
845 | [ 31, 28, 0, 0, 3, 14, 130, 34, 0, 0, 0, 1, 0, 3, 0, 1, 3, 3, 0, 1 ], | |
846 | [ 171, 25, 0, 0, 1, 5, 25, 21, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0 ], | |
847 | [ 17, 21, 68, 29, 6, 15, 13, 22, 0, 0, 6, 12, 3, 14, 4, 10, 1, 7, 0, 3 ], | |
848 | [ 51, 39, 0, 1, 2, 12, 91, 44, 0, 0, 0, 2, 0, 3, 0, 1, 2, 3, 0, 1 ], | |
849 | [ 81, 25, 0, 0, 2, 9, 106, 26, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0 ], | |
850 | [ 140, 37, 0, 1, 1, 8, 24, 33, 0, 0, 1, 2, 0, 2, 0, 1, 1, 2, 0, 0 ], | |
851 | [ 14, 23, 1, 3, 11, 53, 90, 31, 0, 0, 0, 3, 1, 5, 2, 6, 1, 2, 0, 0 ], | |
852 | [ 123, 29, 0, 0, 1, 7, 57, 30, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0 ], | |
853 | [ 13, 14, 0, 0, 4, 20, 175, 20, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 0 ], | |
854 | [ 202, 23, 0, 0, 1, 3, 2, 9, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0 ], | |
855 | ] | |
856 | ]; |