]> git.nihav.org Git - nihav.git/blob - nihav-core/src/frame.rs
core/io: allow skipping right to the bitstream end
[nihav.git] / nihav-core / src / frame.rs
1 //! Packets and decoded frames functionality.
2 use std::cmp::max;
3 //use std::collections::HashMap;
4 use std::fmt;
5 pub use std::sync::Arc;
6 pub use crate::formats::*;
7 pub use crate::refs::*;
8 use std::str::FromStr;
9
10 /// Audio stream information.
11 #[allow(dead_code)]
12 #[derive(Clone,Copy,PartialEq)]
13 pub struct NAAudioInfo {
14 /// Sample rate.
15 pub sample_rate: u32,
16 /// Number of channels.
17 pub channels: u8,
18 /// Audio sample format.
19 pub format: NASoniton,
20 /// Length of one audio block in samples.
21 pub block_len: usize,
22 }
23
24 impl NAAudioInfo {
25 /// Constructs a new `NAAudioInfo` instance.
26 pub fn new(sr: u32, ch: u8, fmt: NASoniton, bl: usize) -> Self {
27 NAAudioInfo { sample_rate: sr, channels: ch, format: fmt, block_len: bl }
28 }
29 /// Returns audio sample rate.
30 pub fn get_sample_rate(&self) -> u32 { self.sample_rate }
31 /// Returns the number of channels.
32 pub fn get_channels(&self) -> u8 { self.channels }
33 /// Returns sample format.
34 pub fn get_format(&self) -> NASoniton { self.format }
35 /// Returns one audio block duration in samples.
36 pub fn get_block_len(&self) -> usize { self.block_len }
37 }
38
39 impl fmt::Display for NAAudioInfo {
40 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
41 write!(f, "{} Hz, {} ch", self.sample_rate, self.channels)
42 }
43 }
44
45 /// Video stream information.
46 #[allow(dead_code)]
47 #[derive(Clone,Copy,PartialEq)]
48 pub struct NAVideoInfo {
49 /// Picture width.
50 pub width: usize,
51 /// Picture height.
52 pub height: usize,
53 /// Picture is stored downside up.
54 pub flipped: bool,
55 /// Picture pixel format.
56 pub format: NAPixelFormaton,
57 /// Declared bits per sample.
58 pub bits: u8,
59 }
60
61 impl NAVideoInfo {
62 /// Constructs a new `NAVideoInfo` instance.
63 pub fn new(w: usize, h: usize, flip: bool, fmt: NAPixelFormaton) -> Self {
64 let bits = fmt.get_total_depth();
65 NAVideoInfo { width: w, height: h, flipped: flip, format: fmt, bits }
66 }
67 /// Returns picture width.
68 pub fn get_width(&self) -> usize { self.width as usize }
69 /// Returns picture height.
70 pub fn get_height(&self) -> usize { self.height as usize }
71 /// Returns picture orientation.
72 pub fn is_flipped(&self) -> bool { self.flipped }
73 /// Returns picture pixel format.
74 pub fn get_format(&self) -> NAPixelFormaton { self.format }
75 /// Sets new picture width.
76 pub fn set_width(&mut self, w: usize) { self.width = w; }
77 /// Sets new picture height.
78 pub fn set_height(&mut self, h: usize) { self.height = h; }
79 }
80
81 impl fmt::Display for NAVideoInfo {
82 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
83 write!(f, "{}x{}", self.width, self.height)
84 }
85 }
86
87 /// A list of possible stream information types.
88 #[derive(Clone,Copy,PartialEq)]
89 pub enum NACodecTypeInfo {
90 /// No codec present.
91 None,
92 /// Audio codec information.
93 Audio(NAAudioInfo),
94 /// Video codec information.
95 Video(NAVideoInfo),
96 }
97
98 impl NACodecTypeInfo {
99 /// Returns video stream information.
100 pub fn get_video_info(&self) -> Option<NAVideoInfo> {
101 match *self {
102 NACodecTypeInfo::Video(vinfo) => Some(vinfo),
103 _ => None,
104 }
105 }
106 /// Returns audio stream information.
107 pub fn get_audio_info(&self) -> Option<NAAudioInfo> {
108 match *self {
109 NACodecTypeInfo::Audio(ainfo) => Some(ainfo),
110 _ => None,
111 }
112 }
113 /// Reports whether the current stream is video stream.
114 pub fn is_video(&self) -> bool {
115 matches!(*self, NACodecTypeInfo::Video(_))
116 }
117 /// Reports whether the current stream is audio stream.
118 pub fn is_audio(&self) -> bool {
119 matches!(*self, NACodecTypeInfo::Audio(_))
120 }
121 }
122
123 impl fmt::Display for NACodecTypeInfo {
124 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
125 let ret = match *self {
126 NACodecTypeInfo::None => "".to_string(),
127 NACodecTypeInfo::Audio(fmt) => format!("{}", fmt),
128 NACodecTypeInfo::Video(fmt) => format!("{}", fmt),
129 };
130 write!(f, "{}", ret)
131 }
132 }
133
134 /// Decoded video frame.
135 ///
136 /// NihAV frames are stored in native type (8/16/32-bit elements) inside a single buffer.
137 /// In case of image with several components those components are stored sequentially and can be accessed in the buffer starting at corresponding component offset.
138 #[derive(Clone)]
139 pub struct NAVideoBuffer<T> {
140 info: NAVideoInfo,
141 data: NABufferRef<Vec<T>>,
142 offs: Vec<usize>,
143 strides: Vec<usize>,
144 }
145
146 impl<T: Clone> NAVideoBuffer<T> {
147 /// Constructs video buffer from the provided components.
148 pub fn from_raw_parts(info: NAVideoInfo, data: NABufferRef<Vec<T>>, offs: Vec<usize>, strides: Vec<usize>) -> Self {
149 Self { info, data, offs, strides }
150 }
151 /// Returns the component offset (0 for all unavailable offsets).
152 pub fn get_offset(&self, idx: usize) -> usize {
153 if idx >= self.offs.len() { 0 }
154 else { self.offs[idx] }
155 }
156 /// Returns picture info.
157 pub fn get_info(&self) -> NAVideoInfo { self.info }
158 /// Returns an immutable reference to the data.
159 pub fn get_data(&self) -> &Vec<T> { self.data.as_ref() }
160 /// Returns a mutable reference to the data.
161 pub fn get_data_mut(&mut self) -> Option<&mut Vec<T>> { self.data.as_mut() }
162 /// Returns the number of components in picture format.
163 pub fn get_num_components(&self) -> usize { self.offs.len() }
164 /// Creates a copy of current `NAVideoBuffer`.
165 pub fn copy_buffer(&self) -> Self {
166 let mut data: Vec<T> = Vec::with_capacity(self.data.len());
167 data.clone_from(self.data.as_ref());
168 let mut offs: Vec<usize> = Vec::with_capacity(self.offs.len());
169 offs.clone_from(&self.offs);
170 let mut strides: Vec<usize> = Vec::with_capacity(self.strides.len());
171 strides.clone_from(&self.strides);
172 NAVideoBuffer { info: self.info, data: NABufferRef::new(data), offs, strides }
173 }
174 /// Returns stride (distance between subsequent lines) for the requested component.
175 pub fn get_stride(&self, idx: usize) -> usize {
176 if idx >= self.strides.len() { return 0; }
177 self.strides[idx]
178 }
179 /// Returns requested component dimensions.
180 pub fn get_dimensions(&self, idx: usize) -> (usize, usize) {
181 get_plane_size(&self.info, idx)
182 }
183 /// Converts current instance into buffer reference.
184 pub fn into_ref(self) -> NABufferRef<Self> {
185 NABufferRef::new(self)
186 }
187
188 fn print_contents(&self, datatype: &str) {
189 println!("{} video buffer size {}", datatype, self.data.len());
190 println!(" format {}", self.info);
191 print!(" offsets:");
192 for off in self.offs.iter() {
193 print!(" {}", *off);
194 }
195 println!();
196 print!(" strides:");
197 for stride in self.strides.iter() {
198 print!(" {}", *stride);
199 }
200 println!();
201 }
202 }
203
204 /// A specialised type for reference-counted `NAVideoBuffer`.
205 pub type NAVideoBufferRef<T> = NABufferRef<NAVideoBuffer<T>>;
206
207 /// Decoded audio frame.
208 ///
209 /// NihAV frames are stored in native type (8/16/32-bit elements) inside a single buffer.
210 /// In case of planar audio samples for each channel are stored sequentially and can be accessed in the buffer starting at corresponding channel offset.
211 #[derive(Clone)]
212 pub struct NAAudioBuffer<T> {
213 info: NAAudioInfo,
214 data: NABufferRef<Vec<T>>,
215 offs: Vec<usize>,
216 stride: usize,
217 step: usize,
218 chmap: NAChannelMap,
219 len: usize,
220 }
221
222 impl<T: Clone> NAAudioBuffer<T> {
223 /// Returns the start position of requested channel data.
224 pub fn get_offset(&self, idx: usize) -> usize {
225 if idx >= self.offs.len() { 0 }
226 else { self.offs[idx] }
227 }
228 /// Returns the distance between the start of one channel and the next one.
229 pub fn get_stride(&self) -> usize { self.stride }
230 /// Returns the distance between the samples in one channel.
231 pub fn get_step(&self) -> usize { self.step }
232 /// Returns audio format information.
233 pub fn get_info(&self) -> NAAudioInfo { self.info }
234 /// Returns channel map.
235 pub fn get_chmap(&self) -> &NAChannelMap { &self.chmap }
236 /// Returns an immutable reference to the data.
237 pub fn get_data(&self) -> &Vec<T> { self.data.as_ref() }
238 /// Returns reference to the data.
239 pub fn get_data_ref(&self) -> NABufferRef<Vec<T>> { self.data.clone() }
240 /// Returns a mutable reference to the data.
241 pub fn get_data_mut(&mut self) -> Option<&mut Vec<T>> { self.data.as_mut() }
242 /// Clones current `NAAudioBuffer` into a new one.
243 pub fn copy_buffer(&mut self) -> Self {
244 let mut data: Vec<T> = Vec::with_capacity(self.data.len());
245 data.clone_from(self.data.as_ref());
246 let mut offs: Vec<usize> = Vec::with_capacity(self.offs.len());
247 offs.clone_from(&self.offs);
248 NAAudioBuffer { info: self.info, data: NABufferRef::new(data), offs, chmap: self.get_chmap().clone(), len: self.len, stride: self.stride, step: self.step }
249 }
250 /// Return the length of frame in samples.
251 pub fn get_length(&self) -> usize { self.len }
252 /// Truncates buffer length if possible.
253 ///
254 /// In case when new length is larger than old length nothing is done.
255 pub fn truncate(&mut self, new_len: usize) {
256 self.len = self.len.min(new_len);
257 }
258
259 fn print_contents(&self, datatype: &str) {
260 println!("Audio buffer with {} data, stride {}, step {}", datatype, self.stride, self.step);
261 println!(" format {}", self.info);
262 println!(" channel map {}", self.chmap);
263 print!(" offsets:");
264 for off in self.offs.iter() {
265 print!(" {}", *off);
266 }
267 println!();
268 }
269 }
270
271 impl NAAudioBuffer<u8> {
272 /// Constructs a new `NAAudioBuffer` instance.
273 pub fn new_from_buf(info: NAAudioInfo, data: NABufferRef<Vec<u8>>, chmap: NAChannelMap) -> Self {
274 let len = data.len();
275 NAAudioBuffer { info, data, chmap, offs: Vec::new(), len, stride: 0, step: 0 }
276 }
277 }
278
279 /// A list of possible decoded frame types.
280 #[derive(Clone)]
281 pub enum NABufferType {
282 /// 8-bit video buffer.
283 Video (NAVideoBufferRef<u8>),
284 /// 16-bit video buffer (i.e. every component or packed pixel fits into 16 bits).
285 Video16 (NAVideoBufferRef<u16>),
286 /// 32-bit video buffer (i.e. every component or packed pixel fits into 32 bits).
287 Video32 (NAVideoBufferRef<u32>),
288 /// Packed video buffer.
289 VideoPacked(NAVideoBufferRef<u8>),
290 /// Audio buffer with 8-bit unsigned integer audio.
291 AudioU8 (NAAudioBuffer<u8>),
292 /// Audio buffer with 16-bit signed integer audio.
293 AudioI16 (NAAudioBuffer<i16>),
294 /// Audio buffer with 32-bit signed integer audio.
295 AudioI32 (NAAudioBuffer<i32>),
296 /// Audio buffer with 32-bit floating point audio.
297 AudioF32 (NAAudioBuffer<f32>),
298 /// Packed audio buffer.
299 AudioPacked(NAAudioBuffer<u8>),
300 /// Buffer with generic data (e.g. subtitles).
301 Data (NABufferRef<Vec<u8>>),
302 /// No data present.
303 None,
304 }
305
306 impl NABufferType {
307 /// Returns the offset to the requested component or channel.
308 pub fn get_offset(&self, idx: usize) -> usize {
309 match *self {
310 NABufferType::Video(ref vb) => vb.get_offset(idx),
311 NABufferType::Video16(ref vb) => vb.get_offset(idx),
312 NABufferType::Video32(ref vb) => vb.get_offset(idx),
313 NABufferType::VideoPacked(ref vb) => vb.get_offset(idx),
314 NABufferType::AudioU8(ref ab) => ab.get_offset(idx),
315 NABufferType::AudioI16(ref ab) => ab.get_offset(idx),
316 NABufferType::AudioI32(ref ab) => ab.get_offset(idx),
317 NABufferType::AudioF32(ref ab) => ab.get_offset(idx),
318 NABufferType::AudioPacked(ref ab) => ab.get_offset(idx),
319 _ => 0,
320 }
321 }
322 /// Returns information for video frames.
323 pub fn get_video_info(&self) -> Option<NAVideoInfo> {
324 match *self {
325 NABufferType::Video(ref vb) => Some(vb.get_info()),
326 NABufferType::Video16(ref vb) => Some(vb.get_info()),
327 NABufferType::Video32(ref vb) => Some(vb.get_info()),
328 NABufferType::VideoPacked(ref vb) => Some(vb.get_info()),
329 _ => None,
330 }
331 }
332 /// Returns reference to 8-bit (or packed) video buffer.
333 pub fn get_vbuf(&self) -> Option<NAVideoBufferRef<u8>> {
334 match *self {
335 NABufferType::Video(ref vb) => Some(vb.clone()),
336 NABufferType::VideoPacked(ref vb) => Some(vb.clone()),
337 _ => None,
338 }
339 }
340 /// Returns reference to 16-bit video buffer.
341 pub fn get_vbuf16(&self) -> Option<NAVideoBufferRef<u16>> {
342 match *self {
343 NABufferType::Video16(ref vb) => Some(vb.clone()),
344 _ => None,
345 }
346 }
347 /// Returns reference to 32-bit video buffer.
348 pub fn get_vbuf32(&self) -> Option<NAVideoBufferRef<u32>> {
349 match *self {
350 NABufferType::Video32(ref vb) => Some(vb.clone()),
351 _ => None,
352 }
353 }
354 /// Returns information for audio frames.
355 pub fn get_audio_info(&self) -> Option<NAAudioInfo> {
356 match *self {
357 NABufferType::AudioU8(ref ab) => Some(ab.get_info()),
358 NABufferType::AudioI16(ref ab) => Some(ab.get_info()),
359 NABufferType::AudioI32(ref ab) => Some(ab.get_info()),
360 NABufferType::AudioF32(ref ab) => Some(ab.get_info()),
361 NABufferType::AudioPacked(ref ab) => Some(ab.get_info()),
362 _ => None,
363 }
364 }
365 /// Returns audio channel map.
366 pub fn get_chmap(&self) -> Option<&NAChannelMap> {
367 match *self {
368 NABufferType::AudioU8(ref ab) => Some(ab.get_chmap()),
369 NABufferType::AudioI16(ref ab) => Some(ab.get_chmap()),
370 NABufferType::AudioI32(ref ab) => Some(ab.get_chmap()),
371 NABufferType::AudioF32(ref ab) => Some(ab.get_chmap()),
372 NABufferType::AudioPacked(ref ab) => Some(ab.get_chmap()),
373 _ => None,
374 }
375 }
376 /// Returns audio frame duration in samples.
377 pub fn get_audio_length(&self) -> usize {
378 match *self {
379 NABufferType::AudioU8(ref ab) => ab.get_length(),
380 NABufferType::AudioI16(ref ab) => ab.get_length(),
381 NABufferType::AudioI32(ref ab) => ab.get_length(),
382 NABufferType::AudioF32(ref ab) => ab.get_length(),
383 NABufferType::AudioPacked(ref ab) => ab.get_length(),
384 _ => 0,
385 }
386 }
387 /// Truncates audio frame duration if possible.
388 pub fn truncate_audio(&mut self, len: usize) {
389 match *self {
390 NABufferType::AudioU8(ref mut ab) => ab.truncate(len),
391 NABufferType::AudioI16(ref mut ab) => ab.truncate(len),
392 NABufferType::AudioI32(ref mut ab) => ab.truncate(len),
393 NABufferType::AudioF32(ref mut ab) => ab.truncate(len),
394 NABufferType::AudioPacked(ref mut ab) => ab.truncate(len),
395 _ => {},
396 };
397 }
398 /// Returns the distance between starts of two channels.
399 pub fn get_audio_stride(&self) -> usize {
400 match *self {
401 NABufferType::AudioU8(ref ab) => ab.get_stride(),
402 NABufferType::AudioI16(ref ab) => ab.get_stride(),
403 NABufferType::AudioI32(ref ab) => ab.get_stride(),
404 NABufferType::AudioF32(ref ab) => ab.get_stride(),
405 NABufferType::AudioPacked(ref ab) => ab.get_stride(),
406 _ => 0,
407 }
408 }
409 /// Returns the distance between two samples in one channel.
410 pub fn get_audio_step(&self) -> usize {
411 match *self {
412 NABufferType::AudioU8(ref ab) => ab.get_step(),
413 NABufferType::AudioI16(ref ab) => ab.get_step(),
414 NABufferType::AudioI32(ref ab) => ab.get_step(),
415 NABufferType::AudioF32(ref ab) => ab.get_step(),
416 NABufferType::AudioPacked(ref ab) => ab.get_step(),
417 _ => 0,
418 }
419 }
420 /// Returns reference to 8-bit (or packed) audio buffer.
421 pub fn get_abuf_u8(&self) -> Option<NAAudioBuffer<u8>> {
422 match *self {
423 NABufferType::AudioU8(ref ab) => Some(ab.clone()),
424 NABufferType::AudioPacked(ref ab) => Some(ab.clone()),
425 _ => None,
426 }
427 }
428 /// Returns reference to 16-bit audio buffer.
429 pub fn get_abuf_i16(&self) -> Option<NAAudioBuffer<i16>> {
430 match *self {
431 NABufferType::AudioI16(ref ab) => Some(ab.clone()),
432 _ => None,
433 }
434 }
435 /// Returns reference to 32-bit integer audio buffer.
436 pub fn get_abuf_i32(&self) -> Option<NAAudioBuffer<i32>> {
437 match *self {
438 NABufferType::AudioI32(ref ab) => Some(ab.clone()),
439 _ => None,
440 }
441 }
442 /// Returns reference to 32-bit floating point audio buffer.
443 pub fn get_abuf_f32(&self) -> Option<NAAudioBuffer<f32>> {
444 match *self {
445 NABufferType::AudioF32(ref ab) => Some(ab.clone()),
446 _ => None,
447 }
448 }
449 /// Prints internal buffer layout.
450 pub fn print_buffer_metadata(&self) {
451 match *self {
452 NABufferType::Video(ref buf) => buf.print_contents("8-bit"),
453 NABufferType::Video16(ref buf) => buf.print_contents("16-bit"),
454 NABufferType::Video32(ref buf) => buf.print_contents("32-bit"),
455 NABufferType::VideoPacked(ref buf) => buf.print_contents("packed"),
456 NABufferType::AudioU8(ref buf) => buf.print_contents("8-bit unsigned integer"),
457 NABufferType::AudioI16(ref buf) => buf.print_contents("16-bit integer"),
458 NABufferType::AudioI32(ref buf) => buf.print_contents("32-bit integer"),
459 NABufferType::AudioF32(ref buf) => buf.print_contents("32-bit float"),
460 NABufferType::AudioPacked(ref buf) => buf.print_contents("packed"),
461 NABufferType::Data(ref buf) => { println!("Data buffer, len = {}", buf.len()); },
462 NABufferType::None => { println!("No buffer"); },
463 };
464 }
465 }
466
467 const NA_SIMPLE_VFRAME_COMPONENTS: usize = 4;
468 /// Simplified decoded frame data.
469 pub struct NASimpleVideoFrame<'a, T: Copy> {
470 /// Widths of each picture component.
471 pub width: [usize; NA_SIMPLE_VFRAME_COMPONENTS],
472 /// Heights of each picture component.
473 pub height: [usize; NA_SIMPLE_VFRAME_COMPONENTS],
474 /// Orientation (upside-down or downside-up) flag.
475 pub flip: bool,
476 /// Strides for each component.
477 pub stride: [usize; NA_SIMPLE_VFRAME_COMPONENTS],
478 /// Start of each component.
479 pub offset: [usize; NA_SIMPLE_VFRAME_COMPONENTS],
480 /// Number of components.
481 pub components: usize,
482 /// Pointer to the picture pixel data.
483 pub data: &'a mut [T],
484 }
485
486 impl<'a, T:Copy> NASimpleVideoFrame<'a, T> {
487 /// Constructs a new instance of `NASimpleVideoFrame` from `NAVideoBuffer`.
488 pub fn from_video_buf(vbuf: &'a mut NAVideoBuffer<T>) -> Option<Self> {
489 let vinfo = vbuf.get_info();
490 let components = vinfo.format.components as usize;
491 if components > NA_SIMPLE_VFRAME_COMPONENTS {
492 return None;
493 }
494 let mut w: [usize; NA_SIMPLE_VFRAME_COMPONENTS] = [0; NA_SIMPLE_VFRAME_COMPONENTS];
495 let mut h: [usize; NA_SIMPLE_VFRAME_COMPONENTS] = [0; NA_SIMPLE_VFRAME_COMPONENTS];
496 let mut s: [usize; NA_SIMPLE_VFRAME_COMPONENTS] = [0; NA_SIMPLE_VFRAME_COMPONENTS];
497 let mut o: [usize; NA_SIMPLE_VFRAME_COMPONENTS] = [0; NA_SIMPLE_VFRAME_COMPONENTS];
498 for comp in 0..components {
499 let (width, height) = vbuf.get_dimensions(comp);
500 w[comp] = width;
501 h[comp] = height;
502 s[comp] = vbuf.get_stride(comp);
503 o[comp] = vbuf.get_offset(comp);
504 }
505 let flip = vinfo.flipped;
506 Some(NASimpleVideoFrame {
507 width: w,
508 height: h,
509 flip,
510 stride: s,
511 offset: o,
512 components,
513 data: vbuf.data.as_mut_slice(),
514 })
515 }
516 }
517
518 /// A list of possible frame allocator errors.
519 #[derive(Debug,Clone,Copy,PartialEq)]
520 pub enum AllocatorError {
521 /// Requested picture dimensions are too large.
522 TooLargeDimensions,
523 /// Invalid input format.
524 FormatError,
525 }
526
527 /// Constructs a new video buffer with requested format.
528 ///
529 /// `align` is power of two alignment for image. E.g. the value of 5 means that frame dimensions will be padded to be multiple of 32.
530 pub fn alloc_video_buffer(vinfo: NAVideoInfo, align: u8) -> Result<NABufferType, AllocatorError> {
531 let fmt = &vinfo.format;
532 let mut new_size: usize = 0;
533 let mut offs: Vec<usize> = Vec::new();
534 let mut strides: Vec<usize> = Vec::new();
535
536 for i in 0..fmt.get_num_comp() {
537 if fmt.get_chromaton(i) == None { return Err(AllocatorError::FormatError); }
538 }
539
540 let align_mod = ((1 << align) as usize) - 1;
541 let width = ((vinfo.width as usize) + align_mod) & !align_mod;
542 let height = ((vinfo.height as usize) + align_mod) & !align_mod;
543 let mut max_depth = 0;
544 let mut all_packed = true;
545 let mut all_bytealigned = true;
546 for i in 0..fmt.get_num_comp() {
547 let ochr = fmt.get_chromaton(i);
548 if ochr.is_none() { continue; }
549 let chr = ochr.unwrap();
550 if !chr.is_packed() {
551 all_packed = false;
552 } else if ((chr.get_shift() + chr.get_depth()) & 7) != 0 {
553 all_bytealigned = false;
554 }
555 max_depth = max(max_depth, chr.get_depth());
556 }
557 let unfit_elem_size = !matches!(fmt.get_elem_size(), 2 | 4);
558
559 //todo semi-packed like NV12
560 if fmt.is_paletted() {
561 //todo various-sized palettes?
562 let stride = vinfo.get_format().get_chromaton(0).unwrap().get_linesize(width);
563 let pic_sz = stride.checked_mul(height);
564 if pic_sz == None { return Err(AllocatorError::TooLargeDimensions); }
565 let pal_size = 256 * (fmt.get_elem_size() as usize);
566 let new_size = pic_sz.unwrap().checked_add(pal_size);
567 if new_size == None { return Err(AllocatorError::TooLargeDimensions); }
568 offs.push(0);
569 offs.push(stride * height);
570 strides.push(stride);
571 let data: Vec<u8> = vec![0; new_size.unwrap()];
572 let buf: NAVideoBuffer<u8> = NAVideoBuffer { data: NABufferRef::new(data), info: vinfo, offs, strides };
573 Ok(NABufferType::Video(buf.into_ref()))
574 } else if !all_packed {
575 for i in 0..fmt.get_num_comp() {
576 let ochr = fmt.get_chromaton(i);
577 if ochr.is_none() { continue; }
578 let chr = ochr.unwrap();
579 offs.push(new_size as usize);
580 let stride = chr.get_linesize(width);
581 let cur_h = chr.get_height(height);
582 let cur_sz = stride.checked_mul(cur_h);
583 if cur_sz == None { return Err(AllocatorError::TooLargeDimensions); }
584 let new_sz = new_size.checked_add(cur_sz.unwrap());
585 if new_sz == None { return Err(AllocatorError::TooLargeDimensions); }
586 new_size = new_sz.unwrap();
587 strides.push(stride);
588 }
589 if max_depth <= 8 {
590 let data: Vec<u8> = vec![0; new_size];
591 let buf: NAVideoBuffer<u8> = NAVideoBuffer { data: NABufferRef::new(data), info: vinfo, offs, strides };
592 Ok(NABufferType::Video(buf.into_ref()))
593 } else if max_depth <= 16 {
594 let data: Vec<u16> = vec![0; new_size];
595 let buf: NAVideoBuffer<u16> = NAVideoBuffer { data: NABufferRef::new(data), info: vinfo, offs, strides };
596 Ok(NABufferType::Video16(buf.into_ref()))
597 } else {
598 let data: Vec<u32> = vec![0; new_size];
599 let buf: NAVideoBuffer<u32> = NAVideoBuffer { data: NABufferRef::new(data), info: vinfo, offs, strides };
600 Ok(NABufferType::Video32(buf.into_ref()))
601 }
602 } else if all_bytealigned || unfit_elem_size {
603 let elem_sz = fmt.get_elem_size();
604 let line_sz = width.checked_mul(elem_sz as usize);
605 if line_sz == None { return Err(AllocatorError::TooLargeDimensions); }
606 let new_sz = line_sz.unwrap().checked_mul(height);
607 if new_sz == None { return Err(AllocatorError::TooLargeDimensions); }
608 new_size = new_sz.unwrap();
609 let data: Vec<u8> = vec![0; new_size];
610 strides.push(line_sz.unwrap());
611 let buf: NAVideoBuffer<u8> = NAVideoBuffer { data: NABufferRef::new(data), info: vinfo, offs, strides };
612 Ok(NABufferType::VideoPacked(buf.into_ref()))
613 } else {
614 let elem_sz = fmt.get_elem_size();
615 let new_sz = width.checked_mul(height);
616 if new_sz == None { return Err(AllocatorError::TooLargeDimensions); }
617 new_size = new_sz.unwrap();
618 match elem_sz {
619 2 => {
620 let data: Vec<u16> = vec![0; new_size];
621 strides.push(width);
622 let buf: NAVideoBuffer<u16> = NAVideoBuffer { data: NABufferRef::new(data), info: vinfo, offs, strides };
623 Ok(NABufferType::Video16(buf.into_ref()))
624 },
625 4 => {
626 let data: Vec<u32> = vec![0; new_size];
627 strides.push(width);
628 let buf: NAVideoBuffer<u32> = NAVideoBuffer { data: NABufferRef::new(data), info: vinfo, offs, strides };
629 Ok(NABufferType::Video32(buf.into_ref()))
630 },
631 _ => unreachable!(),
632 }
633 }
634 }
635
636 /// Constructs a new audio buffer for the requested format and length.
637 #[allow(clippy::collapsible_if)]
638 pub fn alloc_audio_buffer(ainfo: NAAudioInfo, nsamples: usize, chmap: NAChannelMap) -> Result<NABufferType, AllocatorError> {
639 let mut offs: Vec<usize> = Vec::new();
640 if ainfo.format.is_planar() || ((ainfo.format.get_bits() % 8) == 0) {
641 let len = nsamples.checked_mul(ainfo.channels as usize);
642 if len == None { return Err(AllocatorError::TooLargeDimensions); }
643 let length = len.unwrap();
644 let stride;
645 let step;
646 if ainfo.format.is_planar() {
647 stride = nsamples;
648 step = 1;
649 for i in 0..ainfo.channels {
650 offs.push((i as usize) * stride);
651 }
652 } else {
653 stride = 1;
654 step = ainfo.channels as usize;
655 for i in 0..ainfo.channels {
656 offs.push(i as usize);
657 }
658 }
659 if ainfo.format.is_float() {
660 if ainfo.format.get_bits() == 32 {
661 let data: Vec<f32> = vec![0.0; length];
662 let buf: NAAudioBuffer<f32> = NAAudioBuffer { data: NABufferRef::new(data), info: ainfo, offs, chmap, len: nsamples, stride, step };
663 Ok(NABufferType::AudioF32(buf))
664 } else {
665 Err(AllocatorError::TooLargeDimensions)
666 }
667 } else {
668 if ainfo.format.get_bits() == 8 && !ainfo.format.is_signed() {
669 let data: Vec<u8> = vec![0; length];
670 let buf: NAAudioBuffer<u8> = NAAudioBuffer { data: NABufferRef::new(data), info: ainfo, offs, chmap, len: nsamples, stride, step };
671 Ok(NABufferType::AudioU8(buf))
672 } else if ainfo.format.get_bits() == 16 && ainfo.format.is_signed() {
673 let data: Vec<i16> = vec![0; length];
674 let buf: NAAudioBuffer<i16> = NAAudioBuffer { data: NABufferRef::new(data), info: ainfo, offs, chmap, len: nsamples, stride, step };
675 Ok(NABufferType::AudioI16(buf))
676 } else if ainfo.format.get_bits() == 32 && ainfo.format.is_signed() {
677 let data: Vec<i32> = vec![0; length];
678 let buf: NAAudioBuffer<i32> = NAAudioBuffer { data: NABufferRef::new(data), info: ainfo, offs, chmap, len: nsamples, stride, step };
679 Ok(NABufferType::AudioI32(buf))
680 } else {
681 Err(AllocatorError::TooLargeDimensions)
682 }
683 }
684 } else {
685 let len = nsamples.checked_mul(ainfo.channels as usize);
686 if len == None { return Err(AllocatorError::TooLargeDimensions); }
687 let length = ainfo.format.get_audio_size(len.unwrap() as u64);
688 let data: Vec<u8> = vec![0; length];
689 let buf: NAAudioBuffer<u8> = NAAudioBuffer { data: NABufferRef::new(data), info: ainfo, offs, chmap, len: nsamples, stride: 0, step: 0 };
690 Ok(NABufferType::AudioPacked(buf))
691 }
692 }
693
694 /// Constructs a new buffer for generic data.
695 pub fn alloc_data_buffer(size: usize) -> Result<NABufferType, AllocatorError> {
696 let data: Vec<u8> = vec![0; size];
697 let buf: NABufferRef<Vec<u8>> = NABufferRef::new(data);
698 Ok(NABufferType::Data(buf))
699 }
700
701 /// Creates a clone of current buffer.
702 pub fn copy_buffer(buf: &NABufferType) -> NABufferType {
703 buf.clone()
704 }
705
706 /// Video frame pool.
707 ///
708 /// This structure allows codec to effectively reuse old frames instead of allocating and de-allocating frames every time.
709 /// Caller can also reserve some frames for its own purposes e.g. display queue.
710 pub struct NAVideoBufferPool<T:Copy> {
711 pool: Vec<NAVideoBufferRef<T>>,
712 max_len: usize,
713 add_len: usize,
714 }
715
716 impl<T:Copy> NAVideoBufferPool<T> {
717 /// Constructs a new `NAVideoBufferPool` instance.
718 pub fn new(max_len: usize) -> Self {
719 Self {
720 pool: Vec::with_capacity(max_len),
721 max_len,
722 add_len: 0,
723 }
724 }
725 /// Sets the number of buffers reserved for the user.
726 pub fn set_dec_bufs(&mut self, add_len: usize) {
727 self.add_len = add_len;
728 }
729 /// Returns an unused buffer from the pool.
730 pub fn get_free(&mut self) -> Option<NAVideoBufferRef<T>> {
731 for e in self.pool.iter() {
732 if e.get_num_refs() == 1 {
733 return Some(e.clone());
734 }
735 }
736 None
737 }
738 /// Clones provided frame data into a free pool frame.
739 pub fn get_copy(&mut self, rbuf: &NAVideoBufferRef<T>) -> Option<NAVideoBufferRef<T>> {
740 let mut dbuf = self.get_free()?;
741 dbuf.data.copy_from_slice(&rbuf.data);
742 Some(dbuf)
743 }
744 /// Clears the pool from all frames.
745 pub fn reset(&mut self) {
746 self.pool.clear();
747 }
748 }
749
750 impl NAVideoBufferPool<u8> {
751 /// Allocates the target amount of video frames using [`alloc_video_buffer`].
752 ///
753 /// [`alloc_video_buffer`]: ./fn.alloc_video_buffer.html
754 pub fn prealloc_video(&mut self, vinfo: NAVideoInfo, align: u8) -> Result<(), AllocatorError> {
755 let nbufs = self.max_len + self.add_len - self.pool.len();
756 for _ in 0..nbufs {
757 let vbuf = alloc_video_buffer(vinfo, align)?;
758 if let NABufferType::Video(buf) = vbuf {
759 self.pool.push(buf);
760 } else if let NABufferType::VideoPacked(buf) = vbuf {
761 self.pool.push(buf);
762 } else {
763 return Err(AllocatorError::FormatError);
764 }
765 }
766 Ok(())
767 }
768 }
769
770 impl NAVideoBufferPool<u16> {
771 /// Allocates the target amount of video frames using [`alloc_video_buffer`].
772 ///
773 /// [`alloc_video_buffer`]: ./fn.alloc_video_buffer.html
774 pub fn prealloc_video(&mut self, vinfo: NAVideoInfo, align: u8) -> Result<(), AllocatorError> {
775 let nbufs = self.max_len + self.add_len - self.pool.len();
776 for _ in 0..nbufs {
777 let vbuf = alloc_video_buffer(vinfo, align)?;
778 if let NABufferType::Video16(buf) = vbuf {
779 self.pool.push(buf);
780 } else {
781 return Err(AllocatorError::FormatError);
782 }
783 }
784 Ok(())
785 }
786 }
787
788 impl NAVideoBufferPool<u32> {
789 /// Allocates the target amount of video frames using [`alloc_video_buffer`].
790 ///
791 /// [`alloc_video_buffer`]: ./fn.alloc_video_buffer.html
792 pub fn prealloc_video(&mut self, vinfo: NAVideoInfo, align: u8) -> Result<(), AllocatorError> {
793 let nbufs = self.max_len + self.add_len - self.pool.len();
794 for _ in 0..nbufs {
795 let vbuf = alloc_video_buffer(vinfo, align)?;
796 if let NABufferType::Video32(buf) = vbuf {
797 self.pool.push(buf);
798 } else {
799 return Err(AllocatorError::FormatError);
800 }
801 }
802 Ok(())
803 }
804 }
805
806 /// Information about codec contained in a stream.
807 #[allow(dead_code)]
808 #[derive(Clone)]
809 pub struct NACodecInfo {
810 name: &'static str,
811 properties: NACodecTypeInfo,
812 extradata: Option<Arc<Vec<u8>>>,
813 }
814
815 /// A specialised type for reference-counted `NACodecInfo`.
816 pub type NACodecInfoRef = Arc<NACodecInfo>;
817
818 impl NACodecInfo {
819 /// Constructs a new instance of `NACodecInfo`.
820 pub fn new(name: &'static str, p: NACodecTypeInfo, edata: Option<Vec<u8>>) -> Self {
821 NACodecInfo { name, properties: p, extradata: edata.map(Arc::new) }
822 }
823 /// Constructs a new reference-counted instance of `NACodecInfo`.
824 pub fn new_ref(name: &'static str, p: NACodecTypeInfo, edata: Option<Arc<Vec<u8>>>) -> Self {
825 NACodecInfo { name, properties: p, extradata: edata }
826 }
827 /// Converts current instance into a reference-counted one.
828 pub fn into_ref(self) -> NACodecInfoRef { Arc::new(self) }
829 /// Returns codec information.
830 pub fn get_properties(&self) -> NACodecTypeInfo { self.properties }
831 /// Returns additional initialisation data required by the codec.
832 pub fn get_extradata(&self) -> Option<Arc<Vec<u8>>> {
833 if let Some(ref vec) = self.extradata { return Some(vec.clone()); }
834 None
835 }
836 /// Returns codec name.
837 pub fn get_name(&self) -> &'static str { self.name }
838 /// Reports whether it is a video codec.
839 pub fn is_video(&self) -> bool {
840 if let NACodecTypeInfo::Video(_) = self.properties { return true; }
841 false
842 }
843 /// Reports whether it is an audio codec.
844 pub fn is_audio(&self) -> bool {
845 if let NACodecTypeInfo::Audio(_) = self.properties { return true; }
846 false
847 }
848 /// Constructs a new empty reference-counted instance of `NACodecInfo`.
849 pub fn new_dummy() -> Arc<Self> {
850 Arc::new(DUMMY_CODEC_INFO)
851 }
852 /// Updates codec infomation.
853 pub fn replace_info(&self, p: NACodecTypeInfo) -> Arc<Self> {
854 Arc::new(NACodecInfo { name: self.name, properties: p, extradata: self.extradata.clone() })
855 }
856 }
857
858 impl Default for NACodecInfo {
859 fn default() -> Self { DUMMY_CODEC_INFO }
860 }
861
862 impl fmt::Display for NACodecInfo {
863 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
864 let edata = match self.extradata.clone() {
865 None => "no extradata".to_string(),
866 Some(v) => format!("{} byte(s) of extradata", v.len()),
867 };
868 write!(f, "{}: {} {}", self.name, self.properties, edata)
869 }
870 }
871
872 /// Default empty codec information.
873 pub const DUMMY_CODEC_INFO: NACodecInfo = NACodecInfo {
874 name: "none",
875 properties: NACodecTypeInfo::None,
876 extradata: None };
877
878 /// A list of recognized frame types.
879 #[derive(Debug,Clone,Copy,PartialEq)]
880 #[allow(dead_code)]
881 pub enum FrameType {
882 /// Intra frame type.
883 I,
884 /// Inter frame type.
885 P,
886 /// Bidirectionally predicted frame.
887 B,
888 /// Skip frame.
889 ///
890 /// When such frame is encountered then last frame should be used again if it is needed.
891 Skip,
892 /// Some other frame type.
893 Other,
894 }
895
896 impl fmt::Display for FrameType {
897 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
898 match *self {
899 FrameType::I => write!(f, "I"),
900 FrameType::P => write!(f, "P"),
901 FrameType::B => write!(f, "B"),
902 FrameType::Skip => write!(f, "skip"),
903 FrameType::Other => write!(f, "x"),
904 }
905 }
906 }
907
908 /// Timestamp information.
909 #[derive(Debug,Clone,Copy)]
910 pub struct NATimeInfo {
911 /// Presentation timestamp.
912 pub pts: Option<u64>,
913 /// Decode timestamp.
914 pub dts: Option<u64>,
915 /// Duration (in timebase units).
916 pub duration: Option<u64>,
917 /// Timebase numerator.
918 pub tb_num: u32,
919 /// Timebase denominator.
920 pub tb_den: u32,
921 }
922
923 impl NATimeInfo {
924 /// Constructs a new `NATimeInfo` instance.
925 pub fn new(pts: Option<u64>, dts: Option<u64>, duration: Option<u64>, tb_num: u32, tb_den: u32) -> Self {
926 NATimeInfo { pts, dts, duration, tb_num, tb_den }
927 }
928 /// Returns presentation timestamp.
929 pub fn get_pts(&self) -> Option<u64> { self.pts }
930 /// Returns decoding timestamp.
931 pub fn get_dts(&self) -> Option<u64> { self.dts }
932 /// Returns duration.
933 pub fn get_duration(&self) -> Option<u64> { self.duration }
934 /// Sets new presentation timestamp.
935 pub fn set_pts(&mut self, pts: Option<u64>) { self.pts = pts; }
936 /// Sets new decoding timestamp.
937 pub fn set_dts(&mut self, dts: Option<u64>) { self.dts = dts; }
938 /// Sets new duration.
939 pub fn set_duration(&mut self, dur: Option<u64>) { self.duration = dur; }
940
941 /// Converts time in given scale into timestamp in given base.
942 #[allow(clippy::collapsible_if)]
943 pub fn time_to_ts(time: u64, base: u64, tb_num: u32, tb_den: u32) -> u64 {
944 let tb_num = u64::from(tb_num);
945 let tb_den = u64::from(tb_den);
946 let tmp = time.checked_mul(tb_den);
947 if let Some(tmp) = tmp {
948 tmp / base / tb_num
949 } else {
950 if tb_num < base {
951 let coarse = time / tb_num;
952 if let Some(tmp) = coarse.checked_mul(tb_den) {
953 tmp / base
954 } else {
955 (coarse / base) * tb_den
956 }
957 } else {
958 let coarse = time / base;
959 if let Some(tmp) = coarse.checked_mul(tb_den) {
960 tmp / tb_num
961 } else {
962 (coarse / tb_num) * tb_den
963 }
964 }
965 }
966 }
967 /// Converts timestamp in given base into time in given scale.
968 pub fn ts_to_time(ts: u64, base: u64, tb_num: u32, tb_den: u32) -> u64 {
969 let tb_num = u64::from(tb_num);
970 let tb_den = u64::from(tb_den);
971 let tmp = ts.checked_mul(base);
972 if let Some(tmp) = tmp {
973 let tmp2 = tmp.checked_mul(tb_num);
974 if let Some(tmp2) = tmp2 {
975 tmp2 / tb_den
976 } else {
977 (tmp / tb_den) * tb_num
978 }
979 } else {
980 let tmp = ts.checked_mul(tb_num);
981 if let Some(tmp) = tmp {
982 (tmp / tb_den) * base
983 } else {
984 (ts / tb_den) * base * tb_num
985 }
986 }
987 }
988 fn get_cur_ts(&self) -> u64 { self.pts.unwrap_or_else(|| self.dts.unwrap_or(0)) }
989 fn get_cur_millis(&self) -> u64 {
990 let ts = self.get_cur_ts();
991 Self::ts_to_time(ts, 1000, self.tb_num, self.tb_den)
992 }
993 /// Checks whether the current time information is earler than provided reference time.
994 pub fn less_than(&self, time: NATimePoint) -> bool {
995 if self.pts.is_none() && self.dts.is_none() {
996 return true;
997 }
998 match time {
999 NATimePoint::PTS(rpts) => self.get_cur_ts() < rpts,
1000 NATimePoint::Milliseconds(ms) => self.get_cur_millis() < ms,
1001 NATimePoint::None => false,
1002 }
1003 }
1004 /// Checks whether the current time information is the same as provided reference time.
1005 pub fn equal(&self, time: NATimePoint) -> bool {
1006 if self.pts.is_none() && self.dts.is_none() {
1007 return time == NATimePoint::None;
1008 }
1009 match time {
1010 NATimePoint::PTS(rpts) => self.get_cur_ts() == rpts,
1011 NATimePoint::Milliseconds(ms) => self.get_cur_millis() == ms,
1012 NATimePoint::None => false,
1013 }
1014 }
1015 }
1016
1017 /// Time information for specifying durations or seek positions.
1018 #[derive(Clone,Copy,Debug,PartialEq)]
1019 pub enum NATimePoint {
1020 /// Time in milliseconds.
1021 Milliseconds(u64),
1022 /// Stream timestamp.
1023 PTS(u64),
1024 /// No time information present.
1025 None,
1026 }
1027
1028 impl Default for NATimePoint {
1029 fn default() -> Self {
1030 NATimePoint::None
1031 }
1032 }
1033
1034 impl fmt::Display for NATimePoint {
1035 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1036 match *self {
1037 NATimePoint::Milliseconds(millis) => {
1038 let tot_s = millis / 1000;
1039 let ms = millis % 1000;
1040 if tot_s < 60 {
1041 if ms != 0 {
1042 return write!(f, "{}.{:03}", tot_s, ms);
1043 } else {
1044 return write!(f, "{}", tot_s);
1045 }
1046 }
1047 let tot_m = tot_s / 60;
1048 let s = tot_s % 60;
1049 if tot_m < 60 {
1050 if ms != 0 {
1051 return write!(f, "{}:{:02}.{:03}", tot_m, s, ms);
1052 } else {
1053 return write!(f, "{}:{:02}", tot_m, s);
1054 }
1055 }
1056 let h = tot_m / 60;
1057 let m = tot_m % 60;
1058 if ms != 0 {
1059 write!(f, "{}:{:02}:{:02}.{:03}", h, m, s, ms)
1060 } else {
1061 write!(f, "{}:{:02}:{:02}", h, m, s)
1062 }
1063 },
1064 NATimePoint::PTS(pts) => {
1065 write!(f, "{}pts", pts)
1066 },
1067 NATimePoint::None => {
1068 write!(f, "none")
1069 },
1070 }
1071 }
1072 }
1073
1074 impl FromStr for NATimePoint {
1075 type Err = FormatParseError;
1076
1077 /// Parses the string into time information.
1078 ///
1079 /// Accepted formats are `<u64>pts`, `<u64>ms` or `[hh:][mm:]ss[.ms]`.
1080 fn from_str(s: &str) -> Result<Self, Self::Err> {
1081 if s.is_empty() {
1082 return Err(FormatParseError {});
1083 }
1084 if !s.ends_with("pts") {
1085 if s.ends_with("ms") {
1086 let str_b = s.as_bytes();
1087 let num = std::str::from_utf8(&str_b[..str_b.len() - 2]).unwrap();
1088 let ret = num.parse::<u64>();
1089 if let Ok(val) = ret {
1090 return Ok(NATimePoint::Milliseconds(val));
1091 } else {
1092 return Err(FormatParseError {});
1093 }
1094 }
1095 let mut parts = s.split(':');
1096 let mut hrs = None;
1097 let mut mins = None;
1098 let mut secs = parts.next();
1099 if let Some(part) = parts.next() {
1100 std::mem::swap(&mut mins, &mut secs);
1101 secs = Some(part);
1102 }
1103 if let Some(part) = parts.next() {
1104 std::mem::swap(&mut hrs, &mut mins);
1105 std::mem::swap(&mut mins, &mut secs);
1106 secs = Some(part);
1107 }
1108 if parts.next().is_some() {
1109 return Err(FormatParseError {});
1110 }
1111 let hours = if let Some(val) = hrs {
1112 let ret = val.parse::<u64>();
1113 if ret.is_err() { return Err(FormatParseError {}); }
1114 let val = ret.unwrap();
1115 if val > 1000 { return Err(FormatParseError {}); }
1116 val
1117 } else { 0 };
1118 let minutes = if let Some(val) = mins {
1119 let ret = val.parse::<u64>();
1120 if ret.is_err() { return Err(FormatParseError {}); }
1121 let val = ret.unwrap();
1122 if val >= 60 { return Err(FormatParseError {}); }
1123 val
1124 } else { 0 };
1125 let (seconds, millis) = if let Some(val) = secs {
1126 let mut parts = val.split('.');
1127 let ret = parts.next().unwrap().parse::<u64>();
1128 if ret.is_err() { return Err(FormatParseError {}); }
1129 let seconds = ret.unwrap();
1130 if mins.is_some() && seconds >= 60 { return Err(FormatParseError {}); }
1131 let millis = if let Some(val) = parts.next() {
1132 let mut mval = 0;
1133 let mut base = 0;
1134 for ch in val.chars() {
1135 if ('0'..='9').contains(&ch) {
1136 mval = mval * 10 + u64::from((ch as u8) - b'0');
1137 base += 1;
1138 if base > 3 { break; }
1139 } else {
1140 return Err(FormatParseError {});
1141 }
1142 }
1143 while base < 3 {
1144 mval *= 10;
1145 base += 1;
1146 }
1147 mval
1148 } else { 0 };
1149 (seconds, millis)
1150 } else { unreachable!(); };
1151 let tot_secs = hours * 60 * 60 + minutes * 60 + seconds;
1152 Ok(NATimePoint::Milliseconds(tot_secs * 1000 + millis))
1153 } else {
1154 let str_b = s.as_bytes();
1155 let num = std::str::from_utf8(&str_b[..str_b.len() - 3]).unwrap();
1156 let ret = num.parse::<u64>();
1157 if let Ok(val) = ret {
1158 Ok(NATimePoint::PTS(val))
1159 } else {
1160 Err(FormatParseError {})
1161 }
1162 }
1163 }
1164 }
1165
1166 /// Decoded frame information.
1167 #[allow(dead_code)]
1168 #[derive(Clone)]
1169 pub struct NAFrame {
1170 /// Frame timestamp.
1171 pub ts: NATimeInfo,
1172 /// Frame ID.
1173 pub id: i64,
1174 buffer: NABufferType,
1175 info: NACodecInfoRef,
1176 /// Frame type.
1177 pub frame_type: FrameType,
1178 /// Keyframe flag.
1179 pub key: bool,
1180 // options: HashMap<String, NAValue>,
1181 }
1182
1183 /// A specialised type for reference-counted `NAFrame`.
1184 pub type NAFrameRef = Arc<NAFrame>;
1185
1186 fn get_plane_size(info: &NAVideoInfo, idx: usize) -> (usize, usize) {
1187 let chromaton = info.get_format().get_chromaton(idx);
1188 if chromaton.is_none() { return (0, 0); }
1189 let (hs, vs) = chromaton.unwrap().get_subsampling();
1190 let w = (info.get_width() + ((1 << hs) - 1)) >> hs;
1191 let h = (info.get_height() + ((1 << vs) - 1)) >> vs;
1192 (w, h)
1193 }
1194
1195 impl NAFrame {
1196 /// Constructs a new `NAFrame` instance.
1197 pub fn new(ts: NATimeInfo,
1198 ftype: FrameType,
1199 keyframe: bool,
1200 info: NACodecInfoRef,
1201 /*options: HashMap<String, NAValue>,*/
1202 buffer: NABufferType) -> Self {
1203 NAFrame { ts, id: 0, buffer, info, frame_type: ftype, key: keyframe/*, options*/ }
1204 }
1205 /// Returns frame format information.
1206 pub fn get_info(&self) -> NACodecInfoRef { self.info.clone() }
1207 /// Returns frame type.
1208 pub fn get_frame_type(&self) -> FrameType { self.frame_type }
1209 /// Reports whether the frame is a keyframe.
1210 pub fn is_keyframe(&self) -> bool { self.key }
1211 /// Sets new frame type.
1212 pub fn set_frame_type(&mut self, ftype: FrameType) { self.frame_type = ftype; }
1213 /// Sets keyframe flag.
1214 pub fn set_keyframe(&mut self, key: bool) { self.key = key; }
1215 /// Returns frame timestamp.
1216 pub fn get_time_information(&self) -> NATimeInfo { self.ts }
1217 /// Returns frame presentation time.
1218 pub fn get_pts(&self) -> Option<u64> { self.ts.get_pts() }
1219 /// Returns frame decoding time.
1220 pub fn get_dts(&self) -> Option<u64> { self.ts.get_dts() }
1221 /// Returns picture ID.
1222 pub fn get_id(&self) -> i64 { self.id }
1223 /// Returns frame display duration.
1224 pub fn get_duration(&self) -> Option<u64> { self.ts.get_duration() }
1225 /// Sets new presentation timestamp.
1226 pub fn set_pts(&mut self, pts: Option<u64>) { self.ts.set_pts(pts); }
1227 /// Sets new decoding timestamp.
1228 pub fn set_dts(&mut self, dts: Option<u64>) { self.ts.set_dts(dts); }
1229 /// Sets new picture ID.
1230 pub fn set_id(&mut self, id: i64) { self.id = id; }
1231 /// Sets new duration.
1232 pub fn set_duration(&mut self, dur: Option<u64>) { self.ts.set_duration(dur); }
1233
1234 /// Returns a reference to the frame data.
1235 pub fn get_buffer(&self) -> NABufferType { self.buffer.clone() }
1236
1237 /// Converts current instance into a reference-counted one.
1238 pub fn into_ref(self) -> NAFrameRef { Arc::new(self) }
1239
1240 /// Creates new frame with metadata from `NAPacket`.
1241 pub fn new_from_pkt(pkt: &NAPacket, info: NACodecInfoRef, buf: NABufferType) -> NAFrame {
1242 NAFrame::new(pkt.ts, FrameType::Other, pkt.keyframe, info, /*HashMap::new(),*/ buf)
1243 }
1244 }
1245
1246 impl fmt::Display for NAFrame {
1247 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1248 let mut ostr = format!("frame type {}", self.frame_type);
1249 if let Some(pts) = self.ts.pts { ostr = format!("{} pts {}", ostr, pts); }
1250 if let Some(dts) = self.ts.dts { ostr = format!("{} dts {}", ostr, dts); }
1251 if let Some(dur) = self.ts.duration { ostr = format!("{} duration {}", ostr, dur); }
1252 if self.key { ostr = format!("{} kf", ostr); }
1253 write!(f, "[{}]", ostr)
1254 }
1255 }
1256
1257 /// A list of possible stream types.
1258 #[derive(Debug,Clone,Copy,PartialEq)]
1259 #[allow(dead_code)]
1260 pub enum StreamType {
1261 /// Video stream.
1262 Video,
1263 /// Audio stream.
1264 Audio,
1265 /// Subtitles.
1266 Subtitles,
1267 /// Any data stream (or might be an unrecognized audio/video stream).
1268 Data,
1269 /// Nonexistent stream.
1270 None,
1271 }
1272
1273 impl fmt::Display for StreamType {
1274 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1275 match *self {
1276 StreamType::Video => write!(f, "Video"),
1277 StreamType::Audio => write!(f, "Audio"),
1278 StreamType::Subtitles => write!(f, "Subtitles"),
1279 StreamType::Data => write!(f, "Data"),
1280 StreamType::None => write!(f, "-"),
1281 }
1282 }
1283 }
1284
1285 /// Stream data.
1286 #[allow(dead_code)]
1287 #[derive(Clone)]
1288 pub struct NAStream {
1289 media_type: StreamType,
1290 /// Stream ID.
1291 pub id: u32,
1292 num: usize,
1293 info: NACodecInfoRef,
1294 /// Timebase numerator.
1295 pub tb_num: u32,
1296 /// Timebase denominator.
1297 pub tb_den: u32,
1298 /// Duration in timebase units (zero if not available).
1299 pub duration: u64,
1300 }
1301
1302 /// A specialised reference-counted `NAStream` type.
1303 pub type NAStreamRef = Arc<NAStream>;
1304
1305 /// Downscales the timebase by its greatest common denominator.
1306 #[allow(clippy::comparison_chain)]
1307 pub fn reduce_timebase(tb_num: u32, tb_den: u32) -> (u32, u32) {
1308 if tb_num == 0 { return (tb_num, tb_den); }
1309 if (tb_den % tb_num) == 0 { return (1, tb_den / tb_num); }
1310
1311 let mut a = tb_num;
1312 let mut b = tb_den;
1313
1314 while a != b {
1315 if a > b { a -= b; }
1316 else if b > a { b -= a; }
1317 }
1318
1319 (tb_num / a, tb_den / a)
1320 }
1321
1322 impl NAStream {
1323 /// Constructs a new `NAStream` instance.
1324 pub fn new(mt: StreamType, id: u32, info: NACodecInfo, tb_num: u32, tb_den: u32, duration: u64) -> Self {
1325 let (n, d) = reduce_timebase(tb_num, tb_den);
1326 NAStream { media_type: mt, id, num: 0, info: info.into_ref(), tb_num: n, tb_den: d, duration }
1327 }
1328 /// Returns stream id.
1329 pub fn get_id(&self) -> u32 { self.id }
1330 /// Returns stream type.
1331 pub fn get_media_type(&self) -> StreamType { self.media_type }
1332 /// Returns stream number assigned by demuxer.
1333 pub fn get_num(&self) -> usize { self.num }
1334 /// Sets stream number.
1335 pub fn set_num(&mut self, num: usize) { self.num = num; }
1336 /// Returns codec information.
1337 pub fn get_info(&self) -> NACodecInfoRef { self.info.clone() }
1338 /// Returns stream timebase.
1339 pub fn get_timebase(&self) -> (u32, u32) { (self.tb_num, self.tb_den) }
1340 /// Sets new stream timebase.
1341 pub fn set_timebase(&mut self, tb_num: u32, tb_den: u32) {
1342 let (n, d) = reduce_timebase(tb_num, tb_den);
1343 self.tb_num = n;
1344 self.tb_den = d;
1345 }
1346 /// Returns stream duration.
1347 pub fn get_duration(&self) -> u64 { self.duration }
1348 /// Converts current instance into a reference-counted one.
1349 pub fn into_ref(self) -> NAStreamRef { Arc::new(self) }
1350 }
1351
1352 impl fmt::Display for NAStream {
1353 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1354 write!(f, "({}#{} @ {}/{} - {})", self.media_type, self.id, self.tb_num, self.tb_den, self.info.get_properties())
1355 }
1356 }
1357
1358 /// Side data that may accompany demuxed data.
1359 #[derive(Clone)]
1360 pub enum NASideData {
1361 /// Palette information.
1362 ///
1363 /// This side data contains a flag signalling that palette has changed since previous time and a reference to the current palette.
1364 /// Palette is stored in 8-bit RGBA format.
1365 Palette(bool, Arc<[u8; 1024]>),
1366 /// Generic user data.
1367 UserData(Arc<Vec<u8>>),
1368 }
1369
1370 /// Packet with compressed data.
1371 #[allow(dead_code)]
1372 pub struct NAPacket {
1373 stream: NAStreamRef,
1374 /// Packet timestamp.
1375 pub ts: NATimeInfo,
1376 buffer: NABufferRef<Vec<u8>>,
1377 /// Keyframe flag.
1378 pub keyframe: bool,
1379 // options: HashMap<String, NAValue<'a>>,
1380 /// Packet side data (e.g. palette for paletted formats).
1381 pub side_data: Vec<NASideData>,
1382 }
1383
1384 impl NAPacket {
1385 /// Constructs a new `NAPacket` instance.
1386 pub fn new(str: NAStreamRef, ts: NATimeInfo, kf: bool, vec: Vec<u8>) -> Self {
1387 // let mut vec: Vec<u8> = Vec::new();
1388 // vec.resize(size, 0);
1389 NAPacket { stream: str, ts, keyframe: kf, buffer: NABufferRef::new(vec), side_data: Vec::new() }
1390 }
1391 /// Constructs a new `NAPacket` instance reusing a buffer reference.
1392 pub fn new_from_refbuf(str: NAStreamRef, ts: NATimeInfo, kf: bool, buffer: NABufferRef<Vec<u8>>) -> Self {
1393 NAPacket { stream: str, ts, keyframe: kf, buffer, side_data: Vec::new() }
1394 }
1395 /// Returns information about the stream packet belongs to.
1396 pub fn get_stream(&self) -> NAStreamRef { self.stream.clone() }
1397 /// Returns packet timestamp.
1398 pub fn get_time_information(&self) -> NATimeInfo { self.ts }
1399 /// Returns packet presentation timestamp.
1400 pub fn get_pts(&self) -> Option<u64> { self.ts.get_pts() }
1401 /// Returns packet decoding timestamp.
1402 pub fn get_dts(&self) -> Option<u64> { self.ts.get_dts() }
1403 /// Returns packet duration.
1404 pub fn get_duration(&self) -> Option<u64> { self.ts.get_duration() }
1405 /// Reports whether this is a keyframe packet.
1406 pub fn is_keyframe(&self) -> bool { self.keyframe }
1407 /// Returns a reference to packet data.
1408 pub fn get_buffer(&self) -> NABufferRef<Vec<u8>> { self.buffer.clone() }
1409 /// Adds side data for a packet.
1410 pub fn add_side_data(&mut self, side_data: NASideData) { self.side_data.push(side_data); }
1411 /// Assigns packet to a new stream.
1412 pub fn reassign(&mut self, str: NAStreamRef, ts: NATimeInfo) {
1413 self.stream = str;
1414 self.ts = ts;
1415 }
1416 }
1417
1418 impl Drop for NAPacket {
1419 fn drop(&mut self) {}
1420 }
1421
1422 impl fmt::Display for NAPacket {
1423 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1424 let mut ostr = format!("[pkt for {} size {}", self.stream, self.buffer.len());
1425 if let Some(pts) = self.ts.pts { ostr = format!("{} pts {}", ostr, pts); }
1426 if let Some(dts) = self.ts.dts { ostr = format!("{} dts {}", ostr, dts); }
1427 if let Some(dur) = self.ts.duration { ostr = format!("{} duration {}", ostr, dur); }
1428 if self.keyframe { ostr = format!("{} kf", ostr); }
1429 ostr += "]";
1430 write!(f, "{}", ostr)
1431 }
1432 }
1433
1434 /// Packet with a piece of data for a raw stream.
1435 pub struct NARawData {
1436 stream: NAStreamRef,
1437 buffer: NABufferRef<Vec<u8>>,
1438 }
1439
1440 impl NARawData {
1441 /// Constructs a new `NARawData` instance.
1442 pub fn new(stream: NAStreamRef, vec: Vec<u8>) -> Self {
1443 Self { stream, buffer: NABufferRef::new(vec) }
1444 }
1445 /// Constructs a new `NARawData` instance reusing a buffer reference.
1446 pub fn new_from_refbuf(stream: NAStreamRef, buffer: NABufferRef<Vec<u8>>) -> Self {
1447 Self { stream, buffer }
1448 }
1449 /// Returns information about the stream this data belongs to.
1450 pub fn get_stream(&self) -> NAStreamRef { self.stream.clone() }
1451 /// Returns a reference to packet data.
1452 pub fn get_buffer(&self) -> NABufferRef<Vec<u8>> { self.buffer.clone() }
1453 /// Assigns raw data to a new stream.
1454 pub fn reassign(&mut self, stream: NAStreamRef) {
1455 self.stream = stream;
1456 }
1457 }
1458
1459 impl fmt::Display for NARawData {
1460 fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1461 write!(f, "[raw data for {} size {}]", self.stream, self.buffer.len())
1462 }
1463 }
1464
1465 #[cfg(test)]
1466 mod test {
1467 use super::*;
1468
1469 #[test]
1470 fn test_time_parse() {
1471 assert_eq!(NATimePoint::PTS(42).to_string(), "42pts");
1472 assert_eq!(NATimePoint::Milliseconds(4242000).to_string(), "1:10:42");
1473 assert_eq!(NATimePoint::Milliseconds(42424242).to_string(), "11:47:04.242");
1474 let ret = NATimePoint::from_str("42pts");
1475 assert_eq!(ret.unwrap(), NATimePoint::PTS(42));
1476 let ret = NATimePoint::from_str("1:2:3");
1477 assert_eq!(ret.unwrap(), NATimePoint::Milliseconds(3723000));
1478 let ret = NATimePoint::from_str("1:2:3.42");
1479 assert_eq!(ret.unwrap(), NATimePoint::Milliseconds(3723420));
1480 }
1481 }