154b59f22ee58e9e0130c50208dee93328c437d1
[nihav.git] / nihav-core / src / soundcvt / mod.rs
1 //! Sound format conversion.
2 //!
3 //! This module implements the functionality for conversion between different sound formats: packed or planar audio, 8-/16-/24-/32-bit, integer or floating point, different number of channels.
4 //! Eventually this might support resampling as well.
5 pub use crate::formats::{NASoniton,NAChannelMap};
6 pub use crate::frame::{NAAudioBuffer,NAAudioInfo,NABufferType};
7 use crate::formats::NAChannelType;
8 use crate::frame::alloc_audio_buffer;
9 use crate::io::byteio::*;
10 use std::f32::consts::SQRT_2;
11
12 /// A list specifying general sound conversion errors.
13 #[derive(Clone,Copy,Debug,PartialEq)]
14 pub enum SoundConvertError {
15 /// Invalid input arguments.
16 InvalidInput,
17 /// Allocation failed.
18 AllocError,
19 /// Requested feature is not supported.
20 Unsupported,
21 }
22
23 enum ChannelOp {
24 Passthrough,
25 Reorder(Vec<usize>),
26 Remix(Vec<f32>),
27 DupMono(Vec<bool>),
28 }
29
30 impl ChannelOp {
31 fn is_remix(&self) -> bool {
32 match *self {
33 ChannelOp::Remix(_) => true,
34 ChannelOp::DupMono(_) => true,
35 _ => false,
36 }
37 }
38 }
39
40 fn apply_channel_op<T:Copy>(ch_op: &ChannelOp, src: &[T], dst: &mut Vec<T>) {
41 match *ch_op {
42 ChannelOp::Passthrough => {
43 dst.copy_from_slice(src);
44 },
45 ChannelOp::Reorder(ref reorder) => {
46 for (out, idx) in dst.iter_mut().zip(reorder.iter()) {
47 *out = src[*idx];
48 }
49 },
50 _ => {},
51 };
52 }
53
54 fn remix_i32(ch_op: &ChannelOp, src: &[i32], dst: &mut Vec<i32>) {
55 if let ChannelOp::Remix(ref remix_mat) = ch_op {
56 let sch = src.len();
57 for (out, coeffs) in dst.iter_mut().zip(remix_mat.chunks(sch)) {
58 let mut sum = 0.0;
59 for (inval, coef) in src.iter().zip(coeffs.iter()) {
60 sum += (*inval as f32) * *coef;
61 }
62 *out = sum as i32;
63 }
64 }
65 if let ChannelOp::DupMono(ref dup_mat) = ch_op {
66 let src = src[0];
67 for (out, copy) in dst.iter_mut().zip(dup_mat.iter()) {
68 *out = if *copy { src } else { 0 };
69 }
70 }
71 }
72
73 fn remix_f32(ch_op: &ChannelOp, src: &[f32], dst: &mut Vec<f32>) {
74 if let ChannelOp::Remix(ref remix_mat) = ch_op {
75 let sch = src.len();
76 for (out, coeffs) in dst.iter_mut().zip(remix_mat.chunks(sch)) {
77 let mut sum = 0.0;
78 for (inval, coef) in src.iter().zip(coeffs.iter()) {
79 sum += *inval * *coef;
80 }
81 *out = sum;
82 }
83 }
84 if let ChannelOp::DupMono(ref dup_mat) = ch_op {
85 let src = src[0];
86 for (out, copy) in dst.iter_mut().zip(dup_mat.iter()) {
87 *out = if *copy { src } else { 0.0 };
88 }
89 }
90 }
91
92 trait FromFmt<T:Copy> {
93 fn cvt_from(val: T) -> Self;
94 }
95
96 impl FromFmt<u8> for u8 {
97 fn cvt_from(val: u8) -> u8 { val }
98 }
99 impl FromFmt<u8> for i16 {
100 fn cvt_from(val: u8) -> i16 { u16::from(val ^ 0x80).wrapping_mul(0x101) as i16}
101 }
102 impl FromFmt<u8> for i32 {
103 fn cvt_from(val: u8) -> i32 { u32::from(val ^ 0x80).wrapping_mul(0x01010101) as i32 }
104 }
105 impl FromFmt<u8> for f32 {
106 fn cvt_from(val: u8) -> f32 { (f32::from(val) - 128.0) / 128.0 }
107 }
108
109 impl FromFmt<i16> for u8 {
110 fn cvt_from(val: i16) -> u8 { ((val >> 8) + 128).min(255).max(0) as u8 }
111 }
112 impl FromFmt<i16> for i16 {
113 fn cvt_from(val: i16) -> i16 { val }
114 }
115 impl FromFmt<i16> for i32 {
116 fn cvt_from(val: i16) -> i32 { (i32::from(val) & 0xFFFF) | (i32::from(val) << 16) }
117 }
118 impl FromFmt<i16> for f32 {
119 fn cvt_from(val: i16) -> f32 { f32::from(val) / 32768.0 }
120 }
121
122 impl FromFmt<i32> for u8 {
123 fn cvt_from(val: i32) -> u8 { ((val >> 24) + 128).min(255).max(0) as u8 }
124 }
125 impl FromFmt<i32> for i16 {
126 fn cvt_from(val: i32) -> i16 { (val >> 16) as i16 }
127 }
128 impl FromFmt<i32> for i32 {
129 fn cvt_from(val: i32) -> i32 { val }
130 }
131 impl FromFmt<i32> for f32 {
132 fn cvt_from(val: i32) -> f32 { (val as f32) / 31.0f32.exp2() }
133 }
134
135 impl FromFmt<f32> for u8 {
136 fn cvt_from(val: f32) -> u8 { ((val * 128.0) + 128.0).min(255.0).max(0.0) as u8 }
137 }
138 impl FromFmt<f32> for i16 {
139 fn cvt_from(val: f32) -> i16 { (val * 32768.0).min(32767.0).max(-32768.0) as i16 }
140 }
141 impl FromFmt<f32> for i32 {
142 fn cvt_from(val: f32) -> i32 { (val * 31.0f32.exp2()) as i32 }
143 }
144 impl FromFmt<f32> for f32 {
145 fn cvt_from(val: f32) -> f32 { val }
146 }
147
148 trait IntoFmt<T:Copy> {
149 fn cvt_into(self) -> T;
150 }
151
152 impl<T:Copy, U:Copy> IntoFmt<U> for T where U: FromFmt<T> {
153 fn cvt_into(self) -> U { U::cvt_from(self) }
154 }
155
156
157 trait SampleReader {
158 fn get_samples_i32(&self, pos: usize, dst: &mut Vec<i32>);
159 fn get_samples_f32(&self, pos: usize, dst: &mut Vec<f32>);
160 }
161
162 struct GenericSampleReader<'a, T:Copy> {
163 data: &'a [T],
164 stride: usize,
165 }
166
167 impl<'a, T:Copy+IntoFmt<i32>+IntoFmt<f32>> SampleReader for GenericSampleReader<'a, T> {
168 fn get_samples_i32(&self, pos: usize, dst: &mut Vec<i32>) {
169 let mut off = pos;
170 for el in dst.iter_mut() {
171 *el = self.data[off].cvt_into();
172 off += self.stride;
173 }
174 }
175 fn get_samples_f32(&self, pos: usize, dst: &mut Vec<f32>) {
176 let mut off = pos;
177 for el in dst.iter_mut() {
178 *el = self.data[off].cvt_into();
179 off += self.stride;
180 }
181 }
182 }
183
184 struct S8SampleReader<'a> {
185 data: &'a [u8],
186 stride: usize,
187 }
188
189 impl<'a> SampleReader for S8SampleReader<'a> {
190 fn get_samples_i32(&self, pos: usize, dst: &mut Vec<i32>) {
191 let mut off = pos;
192 for el in dst.iter_mut() {
193 *el = (self.data[off] ^ 0x80).cvt_into();
194 off += self.stride;
195 }
196 }
197 fn get_samples_f32(&self, pos: usize, dst: &mut Vec<f32>) {
198 let mut off = pos;
199 for el in dst.iter_mut() {
200 *el = (self.data[off] ^ 0x80).cvt_into();
201 off += self.stride;
202 }
203 }
204 }
205
206 struct PackedSampleReader<'a> {
207 data: &'a [u8],
208 fmt: NASoniton,
209 bpp: usize,
210 }
211
212 impl<'a> PackedSampleReader<'a> {
213 fn new(data: &'a [u8], fmt: NASoniton) -> Self {
214 if (fmt.bits & 7) != 0 { unimplemented!(); }
215 let bpp = (fmt.bits >> 3) as usize;
216 Self { data, fmt, bpp }
217 }
218 fn get_samples<T:Copy>(&self, pos: usize, dst: &mut Vec<T>) where u8: IntoFmt<T>, i16: IntoFmt<T>, i32: IntoFmt<T>, f32: IntoFmt<T> {
219 let mut offset = pos * self.bpp * dst.len();
220
221 for el in dst.iter_mut() {
222 let src = &self.data[offset..];
223 *el = if !self.fmt.float {
224 match (self.bpp, self.fmt.be) {
225 (1, _) => if !self.fmt.signed { src[0].cvt_into() } else { (src[0] ^ 0x80).cvt_into() },
226 (2, true) => (read_u16be(src).unwrap() as i16).cvt_into(),
227 (2, false) => (read_u16le(src).unwrap() as i16).cvt_into(),
228 (3, true) => ((read_u24be(src).unwrap() << 8) as i32).cvt_into(),
229 (3, false) => ((read_u24be(src).unwrap() << 8) as i32).cvt_into(),
230 (4, true) => (read_u32be(src).unwrap() as i32).cvt_into(),
231 (4, false) => (read_u32be(src).unwrap() as i32).cvt_into(),
232 _ => unreachable!(),
233 }
234 } else {
235 match (self.bpp, self.fmt.be) {
236 (4, true) => read_f32be(src).unwrap().cvt_into(),
237 (4, false) => read_f32le(src).unwrap().cvt_into(),
238 (8, true) => (read_f64be(src).unwrap() as f32).cvt_into(),
239 (8, false) => (read_f64le(src).unwrap() as f32).cvt_into(),
240 (_, _) => unreachable!(),
241 }
242 };
243 offset += self.bpp;
244 }
245 }
246 }
247
248 impl SampleReader for PackedSampleReader<'_> {
249 fn get_samples_i32(&self, pos: usize, dst: &mut Vec<i32>) {
250 self.get_samples(pos, dst);
251 }
252 fn get_samples_f32(&self, pos: usize, dst: &mut Vec<f32>) {
253 self.get_samples(pos, dst);
254 }
255 }
256
257 trait SampleWriter {
258 fn store_samples_i32(&mut self, pos: usize, src: &[i32]);
259 fn store_samples_f32(&mut self, pos: usize, src: &[f32]);
260 }
261
262 struct GenericSampleWriter<'a, T:Copy> {
263 data: &'a mut [T],
264 stride: usize,
265 }
266
267 impl<'a, T:Copy+FromFmt<i32>+FromFmt<f32>> SampleWriter for GenericSampleWriter<'a, T> {
268 fn store_samples_i32(&mut self, pos: usize, src: &[i32]) {
269 let mut off = pos;
270 for el in src.iter() {
271 self.data[off] = (*el).cvt_into();
272 off += self.stride;
273 }
274 }
275 fn store_samples_f32(&mut self, pos: usize, src: &[f32]) {
276 let mut off = pos;
277 for el in src.iter() {
278 self.data[off] = (*el).cvt_into();
279 off += self.stride;
280 }
281 }
282 }
283
284 struct PackedSampleWriter<'a> {
285 data: &'a mut [u8],
286 fmt: NASoniton,
287 bpp: usize,
288 }
289
290 impl<'a> PackedSampleWriter<'a> {
291 fn new(data: &'a mut [u8], fmt: NASoniton) -> Self {
292 if (fmt.bits & 7) != 0 { unimplemented!(); }
293 let bpp = (fmt.bits >> 3) as usize;
294 Self { data, fmt, bpp }
295 }
296
297 fn store_samples<T:Copy>(&mut self, pos: usize, src: &[T]) where u8: FromFmt<T>, i16: FromFmt<T>, i32: FromFmt<T>, f32: FromFmt<T> {
298 let mut offset = pos * self.bpp * src.len();
299 for el in src.iter() {
300 let dst = &mut self.data[offset..];
301 if !self.fmt.float {
302 match (self.bpp, self.fmt.be) {
303 (1, _) => {
304 dst[0] = u8::cvt_from(*el);
305 if self.fmt.signed {
306 dst[0] ^= 0x80;
307 }
308 },
309 (2, true) => write_u16be(dst, i16::cvt_from(*el) as u16).unwrap(),
310 (2, false) => write_u16le(dst, i16::cvt_from(*el) as u16).unwrap(),
311 (3, true) => write_u24be(dst, (i32::cvt_from(*el) >> 8) as u32).unwrap(),
312 (3, false) => write_u24le(dst, (i32::cvt_from(*el) >> 8) as u32).unwrap(),
313 (4, true) => write_u32be(dst, i32::cvt_from(*el) as u32).unwrap(),
314 (4, false) => write_u32le(dst, i32::cvt_from(*el) as u32).unwrap(),
315 _ => unreachable!(),
316 };
317 } else {
318 match (self.bpp, self.fmt.be) {
319 (4, true) => write_f32be(dst, f32::cvt_from(*el)).unwrap(),
320 (4, false) => write_f32le(dst, f32::cvt_from(*el)).unwrap(),
321 (8, true) => write_f64be(dst, f64::from(f32::cvt_from(*el))).unwrap(),
322 (8, false) => write_f64le(dst, f64::from(f32::cvt_from(*el))).unwrap(),
323 (_, _) => unreachable!(),
324 };
325 }
326 offset += self.bpp;
327 }
328 }
329 }
330
331 impl SampleWriter for PackedSampleWriter<'_> {
332 fn store_samples_i32(&mut self, pos: usize, src: &[i32]) {
333 self.store_samples(pos, src);
334 }
335 fn store_samples_f32(&mut self, pos: usize, src: &[f32]) {
336 self.store_samples(pos, src);
337 }
338 }
339
340 /// Converts input audio buffer into desired format and returns a newly allocated buffer.
341 pub fn convert_audio_frame(src: &NABufferType, dst_info: &NAAudioInfo, dst_chmap: &NAChannelMap) ->
342 Result<NABufferType, SoundConvertError> {
343 let mut nsamples = src.get_audio_length();
344 if nsamples == 0 {
345 return Err(SoundConvertError::InvalidInput);
346 }
347 let src_chmap = src.get_chmap().unwrap();
348 let src_info = src.get_audio_info().unwrap();
349 if (src_chmap.num_channels() == 0) || (dst_chmap.num_channels() == 0) {
350 return Err(SoundConvertError::InvalidInput);
351 }
352
353 if let NABufferType::AudioPacked(_) = src {
354 nsamples = nsamples * 8 / (src_info.get_format().get_bits() as usize) / src_chmap.num_channels();
355 }
356
357 let needs_remix = src_chmap.num_channels() != dst_chmap.num_channels();
358 let no_channel_needs = !needs_remix && channel_maps_equal(src_chmap, dst_chmap);
359 let needs_reorder = !needs_remix && !no_channel_needs && channel_maps_reordered(src_chmap, dst_chmap);
360
361 let channel_op = if no_channel_needs {
362 ChannelOp::Passthrough
363 } else if needs_reorder {
364 let reorder_mat = calculate_reorder_matrix(src_chmap, dst_chmap);
365 ChannelOp::Reorder(reorder_mat)
366 } else if src_chmap.num_channels() > 1 {
367 let remix_mat = calculate_remix_matrix(src_chmap, dst_chmap);
368 ChannelOp::Remix(remix_mat)
369 } else {
370 let mut dup_mat: Vec<bool> = Vec::with_capacity(dst_chmap.num_channels());
371 for i in 0..dst_chmap.num_channels() {
372 let ch = dst_chmap.get_channel(i);
373 if ch.is_left() || ch.is_right() || ch == NAChannelType::C {
374 dup_mat.push(true);
375 } else {
376 dup_mat.push(false);
377 }
378 }
379 ChannelOp::DupMono(dup_mat)
380 };
381
382 let src_fmt = src_info.get_format();
383 let dst_fmt = dst_info.get_format();
384 let no_conversion = src_fmt == dst_fmt;
385
386 if no_conversion && no_channel_needs {
387 return Ok(src.clone());
388 }
389
390 let ret = alloc_audio_buffer(*dst_info, nsamples, dst_chmap.clone());
391 if ret.is_err() {
392 return Err(SoundConvertError::AllocError);
393 }
394 let mut dst_buf = ret.unwrap();
395
396 let sstep = src.get_audio_step().max(1);
397 let dstep = dst_buf.get_audio_step().max(1);
398 let sr: Box<dyn SampleReader> = match src {
399 NABufferType::AudioU8(ref ab) => {
400 let stride = ab.get_stride();
401 let data = ab.get_data();
402 if !src_fmt.signed {
403 Box::new(GenericSampleReader { data, stride })
404 } else {
405 Box::new(S8SampleReader { data, stride })
406 }
407 },
408 NABufferType::AudioI16(ref ab) => {
409 let data = ab.get_data();
410 let stride = ab.get_stride();
411 Box::new(GenericSampleReader { data, stride })
412 },
413 NABufferType::AudioI32(ref ab) => {
414 let data = ab.get_data();
415 let stride = ab.get_stride();
416 Box::new(GenericSampleReader { data, stride })
417 },
418 NABufferType::AudioF32(ref ab) => {
419 let data = ab.get_data();
420 let stride = ab.get_stride();
421 Box::new(GenericSampleReader { data, stride })
422 },
423 NABufferType::AudioPacked(ref ab) => {
424 let data = ab.get_data();
425 Box::new(PackedSampleReader::new(data, src_fmt))
426 },
427 _ => unimplemented!(),
428 };
429 let mut sw: Box<dyn SampleWriter> = match dst_buf {
430 NABufferType::AudioU8(ref mut ab) => {
431 let stride = ab.get_stride();
432 let data = ab.get_data_mut().unwrap();
433 Box::new(GenericSampleWriter { data, stride })
434 },
435 NABufferType::AudioI16(ref mut ab) => {
436 let stride = ab.get_stride();
437 let data = ab.get_data_mut().unwrap();
438 Box::new(GenericSampleWriter { data, stride })
439 },
440 NABufferType::AudioI32(ref mut ab) => {
441 let stride = ab.get_stride();
442 let data = ab.get_data_mut().unwrap();
443 Box::new(GenericSampleWriter { data, stride })
444 },
445 NABufferType::AudioF32(ref mut ab) => {
446 let stride = ab.get_stride();
447 let data = ab.get_data_mut().unwrap();
448 Box::new(GenericSampleWriter { data, stride })
449 },
450 NABufferType::AudioPacked(ref mut ab) => {
451 let data = ab.get_data_mut().unwrap();
452 Box::new(PackedSampleWriter::new(data, dst_fmt))
453 },
454 _ => unimplemented!(),
455 };
456
457 let into_float = dst_fmt.float;
458 if !into_float {
459 let mut svec = vec![0; src_chmap.num_channels()];
460 let mut dvec = vec![0; dst_chmap.num_channels()];
461 let mut spos = 0;
462 let mut dpos = 0;
463 for _ in 0..nsamples {
464 sr.get_samples_i32(spos, &mut svec);
465 if !channel_op.is_remix() {
466 apply_channel_op(&channel_op, &svec, &mut dvec);
467 } else {
468 remix_i32(&channel_op, &svec, &mut dvec);
469 }
470 sw.store_samples_i32(dpos, &dvec);
471 spos += sstep;
472 dpos += dstep;
473 }
474 } else {
475 let mut svec = vec![0.0; src_chmap.num_channels()];
476 let mut dvec = vec![0.0; dst_chmap.num_channels()];
477 let mut spos = 0;
478 let mut dpos = 0;
479 for _ in 0..nsamples {
480 sr.get_samples_f32(spos, &mut svec);
481 if !channel_op.is_remix() {
482 apply_channel_op(&channel_op, &svec, &mut dvec);
483 } else {
484 remix_f32(&channel_op, &svec, &mut dvec);
485 }
486 sw.store_samples_f32(dpos, &dvec);
487 spos += sstep;
488 dpos += dstep;
489 }
490 }
491 drop(sw);
492
493 Ok(dst_buf)
494 }
495
496 /// Checks whether two channel maps are identical.
497 pub fn channel_maps_equal(a: &NAChannelMap, b: &NAChannelMap) -> bool {
498 if a.num_channels() != b.num_channels() { return false; }
499 for i in 0..a.num_channels() {
500 if a.get_channel(i) != b.get_channel(i) {
501 return false;
502 }
503 }
504 true
505 }
506
507 /// Checks whether two channel maps have identical channels (but maybe in different order).
508 pub fn channel_maps_reordered(a: &NAChannelMap, b: &NAChannelMap) -> bool {
509 if a.num_channels() != b.num_channels() { return false; }
510 let mut count_a = [0u8; 32];
511 let mut count_b = [0u8; 32];
512 for i in 0..a.num_channels() {
513 count_a[a.get_channel(i) as usize] += 1;
514 count_b[b.get_channel(i) as usize] += 1;
515 }
516 for (c0, c1) in count_a.iter().zip(count_b.iter()) {
517 if *c0 != *c1 {
518 return false;
519 }
520 }
521 true
522 }
523
524 /// Calculates permutation matrix for reordering channels from source channel map into destination one.
525 pub fn calculate_reorder_matrix(src: &NAChannelMap, dst: &NAChannelMap) -> Vec<usize> {
526 if src.num_channels() != dst.num_channels() { return Vec::new(); }
527 let num_channels = src.num_channels();
528 let mut reorder: Vec<usize> = Vec::with_capacity(num_channels);
529 for i in 0..num_channels {
530 let dst_ch = dst.get_channel(i);
531 for j in 0..num_channels {
532 if src.get_channel(j) == dst_ch {
533 reorder.push(j);
534 break;
535 }
536 }
537 }
538 if reorder.len() != num_channels { reorder.clear(); }
539 reorder
540 }
541
542 fn is_stereo(chmap: &NAChannelMap) -> bool {
543 (chmap.num_channels() == 2) &&
544 (chmap.get_channel(0) == NAChannelType::L) &&
545 (chmap.get_channel(1) == NAChannelType::R)
546 }
547
548 /// Calculates matrix of remixing coefficients for converting input channel layout into destination one.
549 pub fn calculate_remix_matrix(src: &NAChannelMap, dst: &NAChannelMap) -> Vec<f32> {
550 if is_stereo(src) && dst.num_channels() == 1 &&
551 (dst.get_channel(0) == NAChannelType::L || dst.get_channel(0) == NAChannelType::C) {
552 return vec![0.5, 0.5];
553 }
554 if src.num_channels() >= 5 && is_stereo(dst) {
555 let src_nch = src.num_channels();
556 let mut mat = vec![0.0f32; src_nch * 2];
557 let (l_mat, r_mat) = mat.split_at_mut(src_nch);
558 for ch in 0..src_nch {
559 match src.get_channel(ch) {
560 NAChannelType::L => l_mat[ch] = 1.0,
561 NAChannelType::R => r_mat[ch] = 1.0,
562 NAChannelType::C => { l_mat[ch] = SQRT_2 / 2.0; r_mat[ch] = SQRT_2 / 2.0; },
563 NAChannelType::Ls => l_mat[ch] = SQRT_2 / 2.0,
564 NAChannelType::Rs => r_mat[ch] = SQRT_2 / 2.0,
565 _ => {},
566 };
567 }
568 return mat;
569 }
570 unimplemented!();
571 }
572
573 #[cfg(test)]
574 mod test {
575 use super::*;
576 use std::str::FromStr;
577 use crate::formats::*;
578
579 #[test]
580 fn test_matrices() {
581 let chcfg51 = NAChannelMap::from_str("L,R,C,LFE,Ls,Rs").unwrap();
582 let chcfg52 = NAChannelMap::from_str("C,L,R,Ls,Rs,LFE").unwrap();
583 let stereo = NAChannelMap::from_str("L,R").unwrap();
584 let reorder = calculate_reorder_matrix(&chcfg51, &chcfg52);
585 assert_eq!(reorder.as_slice(), [ 2, 0, 1, 4, 5, 3]);
586 let remix = calculate_remix_matrix(&chcfg51, &stereo);
587 assert_eq!(remix.as_slice(), [ 1.0, 0.0, SQRT_2 / 2.0, 0.0, SQRT_2 / 2.0, 0.0,
588 0.0, 1.0, SQRT_2 / 2.0, 0.0, 0.0, SQRT_2 / 2.0 ]);
589 }
590 #[test]
591 fn test_conversion() {
592 const CHANNEL_VALUES: [u8; 6] = [ 140, 90, 130, 128, 150, 70 ];
593 let chcfg51 = NAChannelMap::from_str("L,R,C,LFE,Ls,Rs").unwrap();
594 let stereo = NAChannelMap::from_str("L,R").unwrap();
595 let src_ainfo = NAAudioInfo {
596 sample_rate: 44100,
597 channels: chcfg51.num_channels() as u8,
598 format: SND_U8_FORMAT,
599 block_len: 512,
600 };
601 let mut dst_ainfo = NAAudioInfo {
602 sample_rate: 44100,
603 channels: stereo.num_channels() as u8,
604 format: SND_S16P_FORMAT,
605 block_len: 512,
606 };
607 let mut src_frm = alloc_audio_buffer(src_ainfo, 42, chcfg51.clone()).unwrap();
608 if let NABufferType::AudioU8(ref mut abuf) = src_frm {
609 let data = abuf.get_data_mut().unwrap();
610 let mut idx = 0;
611 for _ in 0..42 {
612 for ch in 0..chcfg51.num_channels() {
613 data[idx] = CHANNEL_VALUES[ch];
614 idx += 1;
615 }
616 }
617 } else {
618 panic!("wrong buffer type");
619 }
620
621 let out_frm = convert_audio_frame(&src_frm, &dst_ainfo, &stereo).unwrap();
622 if let NABufferType::AudioI16(ref abuf) = out_frm {
623 let off0 = abuf.get_offset(0);
624 let off1 = abuf.get_offset(1);
625 let data = abuf.get_data();
626 let l = data[off0];
627 let r = data[off1];
628 assert_eq!(l, 7445);
629 assert_eq!(r, -19943);
630 } else {
631 panic!("wrong buffer type");
632 }
633
634 dst_ainfo.format = SND_F32P_FORMAT;
635 let out_frm = convert_audio_frame(&src_frm, &dst_ainfo, &stereo).unwrap();
636 if let NABufferType::AudioF32(ref abuf) = out_frm {
637 let off0 = abuf.get_offset(0);
638 let off1 = abuf.get_offset(1);
639 let data = abuf.get_data();
640 let l = data[off0];
641 let r = data[off1];
642 assert_eq!(l, 0.22633252);
643 assert_eq!(r, -0.6062342);
644 } else {
645 panic!("wrong buffer type");
646 }
647 }
648 }